| [1] |
MCDOWELL N G, ALLEN C D, ANDERSON-TEIXEIRA K, et al. Pervasive shifts in forest dynamics in a changing world[J]. Science, 2020, 368(6494):eaaz9463.
|
| [2] |
ANDEREGG W R L, WU C, ACIL N, et al. A climate risk analysis of Earth’s forests in the 21st century[J]. Science, 2022, 377(6610):1099-1103.
|
| [3] |
ETZOLD S, ZIEMIŃSKA K, ROHNER B, et al. One century of forest monitoring data in Switzerland reveals species-and site-specific trends of climate-induced tree mortality[J]. Frontiers in Plant Science, 2019,10:307.
|
| [4] |
HAMMOND W M, WILLIAMS A P, ABATZOGLOU J T, et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests[J]. Nature Communications, 2022, 13(1):1761.
|
| [5] |
李镇江, 于晨一, 刘升云, 等. 伏牛山南坡3种针叶树径向生长对气候变化的响应[J]. 应用生态学报, 2023, 34(5):1178-1186.
doi: 10.13287/j.1001-9332.202305.004
|
| [6] |
KLOCKOW P A, VOGEL J G, EDGAR C B, et al. Lagged mortality among tree species four years after an exceptional drought in east Texas[J]. Ecosphere, 2018, 9(10):e02455.
|
| [7] |
FURNISS T J, LARSON A J, KANE V R, et al. Wildfire and drought moderate the spatial elements of tree mortality[J]. Ecosphere, 2020, 11(8):e03214.
|
| [8] |
MARINGER J, STELZER A S, PAUL C, et al. Ninety-five years of observed disturbance-based tree mortality modeled with climate-sensitive accelerated failure time models[J]. European Journal of Forest Research, 2021, 140(1):255-272.
|
| [9] |
KWEON D, COMEAU P G. Relationships between tree survival,stand structure and age in trembling aspen dominated stands[J]. Forest Ecology and Management, 2019,438:114-122.
|
| [10] |
MA Qin, SU Yanjun, NIU Chunyue, et al. Tree mortality during long-term droughts is lower in structurally complex forest stands[J]. Nature Communications, 2023, 14(1):7467.
doi: 10.1038/s41467-023-43083-8
pmid: 37978191
|
| [11] |
ROZENDAAL D M A, PHILLIPS O L, LEWIS S L, et al. Competition influences tree growth,but not mortality,across environmental gradients in Amazonia and tropical Africa[J]. Ecology, 2020, 101(7):e03052.
|
| [12] |
李春明. 基于广义线性混合效应模型的蒙古栎林单木枯损建模及影响因子分析[J]. 林业科学研究, 2020, 33(6):105-113.
|
| [13] |
闫明, 陈艳梅, 闫静, 等. 基于广义线性混合效应模型的森林树木死亡研究[J]. 生态学报, 2024, 44(6):2420-2436.
|
| [14] |
QUADRI P, SILVA L C R, ZAVALETA E S. Climate-induced reversal of tree growth patterns at a tropical treeline[J]. Science Advances, 2021, 7(22):eabb7572.
|
| [15] |
BRIENEN R J W, CALDWELL L, DUCHESNE L, et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs[J]. Nature Communications, 2020, 11(1):4241.
doi: 10.1038/s41467-020-17966-z
pmid: 32901006
|
| [16] |
IRELAND K B, MOORE M M, FULÉ P Z, et al. Slow lifelong growth predisposes populus tremuloides trees to mortality[J]. Oecologia, 2014, 175(3):847-859.
doi: 10.1007/s00442-014-2951-5
pmid: 24817158
|
| [17] |
GUO Yili, CHEN Han Y H, WANG Bin, et al. Conspecific and heterospecific crowding facilitate tree survival in a tropical karst seasonal rainforest[J]. Forest Ecology and Management, 2021,481:118751.
|
| [18] |
HENRY C R, WALTERS M B. Tree species size class patterns portend compositional shifts and low resilience in managed northern hardwood forests[J]. Ecosphere, 2023, 14(7):e4621.
|
| [19] |
LIU Xiaojuan, HUANG Yuanyuan, CHEN Lei, et al. Species richness,functional traits and climate interactively affect tree survival in a large forest biodiversity experiment[J]. Journal of Ecology, 2022, 110(10):2522-2531.
|
| [20] |
HISANO M, CHEN Han Y.H., SEARLE E B, et al. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century[J]. Ecology Letters, 2019, 22(6):999-1008.
doi: 10.1111/ele.13259
pmid: 30920143
|
| [21] |
PRETZSCH H, BIBER P. Tree species mixing can increase maximum stand density[J]. 2016, 46(10):1179-1193.
|
| [22] |
GOTTSCHALL F, CESARZ S, AUGE H, et al. Tree community composition stabilizes ecosystem functions in response to drought[J]. Ecosphere, 2023, 14(4):e4486.
|
| [23] |
KING R A, PULLEN J, COOK-PATTON S C, et al. Diversity stabilizes but does not increase sapling survival in a tree diversity experiment[J]. Restoration Ecology, 2023, 31(5):e13927.
|
| [24] |
GREENWOOD S, RUIZ-BENITO P, MARTÍNEZ-VILALTA J, et al. Tree mortality across biomes is promoted by drought intensity,lower wood density and higher specific leaf area[J]. Ecology Letters, 2017, 20(4):539-553.
|
| [25] |
王婷, 任思远, 袁志良, 等. 密度制约对宝天曼落叶阔叶林锐齿栎死亡前后分布格局的影响[J]. 生物多样性, 2014, 22(4):449-457.
doi: 10.3724/SP.J.1003.2014.14101
|
| [26] |
韦博良, 袁志良, 牛帅, 等. 河南省宝天曼锐齿槲栎林树木死亡对空间格局及种间相关性的影响[J]. 植物生态学报, 2017, 41(4):430-438.
doi: 10.17521/cjpe.2016.0297
|
| [27] |
刘晓静, 任思远, 李鹿鑫, 等. 宝天曼国家级自然保护区落叶阔叶林密度制约效应对树木存活的影响[J]. 生物多样性, 2016, 24(6):639-648.
doi: 10.17520/biods.2015134
|
| [28] |
于晨一, 李镇江, 刘升云, 等. 宝天曼国家级自然保护区木本植物多样性及土壤养分的海拔梯度格局[J]. 东北林业大学学报, 2023, 51(9):101-106.
|
| [29] |
马克平. 中国生物多样性监测网络建设:从CForBio到Sino BON[J]. 生物多样性, 2015, 23(1):1-2.
doi: 10.17520/biods.2015025
|
| [30] |
于晨一, 李镇江, 孙怡洁, 等. 太行山南麓锐齿槲栎-油松混交林竞争关系与空间格局[J]. 中南林业科技大学学报, 2023(3):107-115.
|
| [31] |
闫明, 刘青青, 刘志萍, 等. 干旱和林分因子对树木死亡的影响:以美国德克萨斯州东部国家森林为例[J]. 应用生态学报, 2022(11):2897-2906.
doi: 10.13287/j.1001-9332.202211.002
|
| [32] |
李建, 李晓宇, 曹静, 等. 长白山次生针阔混交林群落结构特征及群落动态[J]. 生态学报, 2020, 40(4):1195-1206.
|
| [33] |
谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149-1156.
doi: 10.17521/cjpe.2016.0321
|
| [34] |
邓婷婷, 魏岩, 任思远, 等. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7):18-29.
|
| [35] |
DIXON P. VEGAN,a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6):927-930.
|
| [36] |
LAI Jiangshan, LORTIE C J, MUENCHEN R A, et al. Evaluating the popularity of R in ecology[J]. Ecosphere, 2019, 10(1):e02567.
|
| [37] |
常伟, 党坤良, 武朋辉, 等. 秦岭林区锐齿栎次生林种群空间分布格局[J]. 生态学报, 2016(4):1021-1029.
|
| [38] |
黎磊, 周道玮, 盛连喜. 植物种群自疏过程中构件生物量与密度的关系[J]. 生态学报, 2012(13):3987-3997.
|
| [39] |
YU Chenyi, REN Siyuan, HUANG Yudie, et al. Biotic factors drive woody plant species diversity across a relative density gradient of Quercus aliena var.acuteserratamaxim.in the Warm-Temperate Natural Oak Forest,Central China[J]. Forests, 2023, 14(10):1956.
|
| [40] |
HAMMOND W M, ADAMS H D. Dying on time:traits influencing the dynamics of tree mortality risk from drought[J]. Tree Physiology, 2019, 39(6):906-909.
|
| [41] |
何念军, 朱文婷, 谢峰淋, 等. 亚热带-温带过渡区秦岭落叶阔叶林幼苗存活机制[J]. 西北植物学报, 2024, 44(1):98-104.
|
| [42] |
VAN DE PEER T, VERHEYEN K, BAETEN L, et al. Biodiversity as insurance for sapling survival in experimental tree plantations[J]. Journalof Applied Ecology, 2016, 53(6):1777-1786.
|
| [43] |
CORDERO MONTOYA R, D’AMATO A W, MESSIER C, et al. Mapping temperate forest stands using mobile terrestrial LiDAR shows the influence of forest management regimes on tree mortality[J]. Forest Ecology and Management, 2023,544:121194.
|
| [44] |
SPEAKMAN J R. Body size,energy metabolism and lifespan[J]. Journal of Experimental Biology, 2005, 208(9):1717-1730.
|
| [45] |
马克平, 刘玉明. 生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J]. 生物多样性, 1994(4):231-239.
doi: 10.17520/biods.1994038
|
| [46] |
JOHNSON D J, CONDIT R, HUBBELL S P, et al. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest[J]. Proceedings of the Royal Society B:Biological Sciences,2017, 284(1869):20172210.
|