Forest and Grassland Resources Research ›› 2025›› Issue (2): 141-150.doi: 10.13466/j.cnki.lczyyj.2025.02.015
• Technical Application • Previous Articles
ZOU Wentao1(
), ZENG Weisheng2(
), WEN Xuexiang2
Received:2025-02-16
Revised:2025-03-26
Online:2025-04-28
Published:2025-12-04
CLC Number:
ZOU Wentao, ZENG Weisheng, WEN Xuexiang. Modeling the relationships between tree crown and DBH and tree height for eight pine species in China[J]. Forest and Grassland Resources Research, 2025, (2): 141-150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2025.02.015
Tab.1
Statistics of modeling sample data
| 树种 | 胸径/cm | 树高/m | 冠幅/m | 冠长/m | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 最小值 | 最大值 | 平均值± 标准差 | 最小值 | 最大值 | 平均值± 标准差 | 最小值 | 最大值 | 平均值± 标准差 | 最小值 | 最大值 | 平均值± 标准差 | ||||
| 马尾松 | 1.2 | 47.2 | 16.5±11.9 | 1.6 | 30.3 | 12.1±7.2 | 0.60 | 11.73 | 4.43±2.50 | 0.7 | 17.5 | 6.14±3.46 | |||
| 油 松 | 1.2 | 32.9 | 15.3± 9.9 | 1.6 | 20.1 | 9.4±4.8 | 0.75 | 10.42 | 3.85±2.25 | 0.9 | 13.3 | 5.99±3.33 | |||
| 云南松 | 1.8 | 47.1 | 16.7±12.4 | 1.8 | 33.3 | 10.7±6.9 | 0.75 | 12.59 | 4.31±2.64 | 0.8 | 26.1 | 6.10±4.07 | |||
| 思茅松 | 1.6 | 46.2 | 16.7±12.1 | 1.9 | 26.4 | 11.4±6.8 | 0.75 | 14.15 | 4.96±3.39 | 1.1 | 17.2 | 6.26±3.60 | |||
| 高山松 | 1.5 | 53.0 | 16.9±12.1 | 1.9 | 31.3 | 10.2±6.3 | 0.15 | 11.75 | 3.74±2.59 | 0.9 | 15.4 | 6.32±3.39 | |||
| 黄山松 | 1.2 | 41.8 | 16.3±11.8 | 1.6 | 24.1 | 10.6±6.0 | 0.45 | 10.05 | 3.67±2.35 | 0.3 | 15.6 | 4.74±3.01 | |||
| 樟子松 | 1.5 | 38.7 | 16.4±11.7 | 1.9 | 27.7 | 10.9±6.3 | 0.78 | 13.44 | 4.95±2.87 | 0.9 | 19.1 | 6.07±3.91 | |||
| 湿地松 | 1.2 | 33.9 | 15.5± 9.8 | 1.6 | 20.0 | 9.8±4.8 | 0.85 | 9.00 | 3.85±2.21 | 1.0 | 12.0 | 5.32±2.66 | |||
| 合计 | 1.2 | 53.0 | 16.3±11.6 | 1.6 | 33.3 | 10.8±6.4 | 0.15 | 14.15 | 4.24±2.65 | 0.3 | 26.1 | 5.90±3.49 | |||
Tab.2
Fitting results of population average models
| 模型 | 模型参数 | 评价指标 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ai | bi | ci | di | R2 | SEE/m | TRE/% | ASE/% | MPE/% | MPSE/% | |||||||
| (1) | 0.896 | 0.205 | 0.800 | 1.18 | 0.00 | -0.53 | 1.49 | 21.59 | ||||||||
| (2) | 1.202 | 0.200 | -0.285 | 0.801 | 1.18 | 0.00 | -0.31 | 1.49 | 21.57 | |||||||
| (3) | 0.551 | 0.477 | 0.410 | 0.756 | 1.73 | 0.02 | -0.13 | 1.56 | 21.21 | |||||||
| (4) | -1.129 | -0.011 3 | 0.045 0 | 0.770 | 0.750 | 1.75 | 1.56 | 5.95 | 1.58 | 24.27 | ||||||
| (5) | 1.229 | 0.754 | 0.764 | 3.09 | -0.80 | -3.52 | 1.53 | 23.11 | ||||||||
Tab.3
The estimates of constant parameters in mixed models and global parameters in dummy variable models and the evaluation indexes for the population
| 模型 | 模型编号 | 固定或全局参数 | 评价指标 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| ai | bi | ci | R2 | SEE/m | TRE/% | ASE/% | MPE/% | MPSE/% | |||
| 混合模型 | (1) | 0.852 8 | 0.206 8 | / | 0.840 | 1.07 | 0.00 | -0.51 | 1.34 | 19.26 | |
| (3) | 0.468 4* | 0.464 4 | 0.477 5 | 0.787 | 1.62 | 0.00 | 0.09 | 1.47 | 19.92 | ||
| (5) | 1.277 0* | 0.735 6 | / | 0.787 | 2.97 | -0.94 | -3.93 | 1.46 | 22.47 | ||
| 哑变量模型 | (1) | 0.846 7 | 0.207 1 | / | 0.840 | 1.07 | 0.00 | -0.33 | 1.34 | 19.32 | |
| (3) | 0.467 5* | 0.459 1 | 0.484 9 | 0.787 | 1.62 | 0.08 | 0.32 | 1.46 | 20.05 | ||
| (5) | 1.280 8* | 0.734 2 | / | 0.787 | 2.95 | -0.92 | -3.91 | 1.46 | 22.47 | ||
Tab.4
The estimates of random parameters in mixed models and specific parameters in dummy variable models and the evaluation indexes for the tree species
| 模型 | 模型 编号 | 树种 | 随机或特定参数 | 树种效应 | 评价指标 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | SEE/m | TRE/% | ASE/% | MPE/% | MPSE/% | |||||||
| 混合模型 | (1) | 马尾松 | 0.422 9 | -0.016 0 | 0.810 | 1.09 | 0.27 | -0.70 | 2.80 | 19.62 | ||
| 油 松 | -0.117 1 | -0.002 9 | 0.813 | 0.98 | -0.22 | 0.81 | 4.13 | 19.41 | ||||
| 云南松 | 0.210 5 | -0.013 5 | 0.803 | 1.18 | 0.25 | -1.35 | 4.42 | 19.96 | ||||
| 思茅松 | -0.249 9 | 0.055 0 | 0.910 | 1.03 | -0.09 | -1.23 | 3.34 | 14.14 | ||||
| 高山松 | -0.355 6 | -0.013 3 | 0.834 | 1.06 | -0.69 | -1.21 | 4.58 | 21.14 | ||||
| 黄山松 | -0.131 0 | -0.024 6 | 0.829 | 0.98 | -0.38 | -0.57 | 4.31 | 23.22 | ||||
| 樟子松 | 0.475 4 | 0.011 9 | 0.773 | 1.38 | 0.69 | 1.11 | 4.49 | 21.94 | ||||
| 湿地松 | -0.255 2 | 0.003 4 | 0.896 | 0.73 | -0.40 | -0.76 | 3.03 | 14.39 | ||||
| (3) | 马尾松 | 0.042 2 | -0.066 1 | 0.757 | 1.71 | 1.55 | 3.37 | 3.16 | 20.90 | |||
| 油 松 | -0.220 2 | 0.326 4 | 0.844 | 1.32 | 1.18 | 3.43 | 3.57 | 18.82 | ||||
| 云南松 | -0.197 7 | 0.260 2 | 0.813 | 1.77 | 0.45 | 1.56 | 4.67 | 18.74 | ||||
| 思茅松 | 0.149 9 | -0.178 5 | 0.867 | 1.32 | -0.57 | -1.91 | 3.40 | 14.85 | ||||
| 高山松 | 0.329 0 | -0.405 7 | 0.766 | 1.65 | 1.21 | 0.37 | 4.21 | 19.28 | ||||
| 黄山松 | -0.003 1 | -0.058 5 | 0.785 | 1.40 | -5.52 | -9.07 | 4.76 | 21.66 | ||||
| 樟子松 | 0.019 7 | -0.015 5 | 0.660 | 2.29 | -0.48 | -2.01 | 6.09 | 26.08 | ||||
| 湿地松 | -0.119 8 | 0.137 7 | 0.834 | 1.12 | -0.29 | 1.62 | 3.36 | 18.12 | ||||
| (1) | ||||||||||||
| 哑变量模型 | 马尾松 | 0.470 1 | -0.018 0 | 0.810 | 1.09 | 0.00 | -1.30 | 2.80 | 19.63 | |||
| 油 松 | -0.130 0 | -0.002 5 | 0.813 | 0.98 | 0.00 | 1.28 | 4.13 | 19.54 | ||||
| 云南松 | 0.260 3 | -0.015 8 | 0.803 | 1.18 | 0.00 | -2.01 | 4.42 | 20.08 | ||||
| 思茅松 | -0.325 9 | 0.059 4 | 0.910 | 1.02 | 0.00 | 0.01 | 3.33 | 14.06 | ||||
| 高山松 | -0.399 7 | -0.012 2 | 0.834 | 1.06 | 0.00 | 0.31 | 4.58 | 21.71 | ||||
| 黄山松 | -0.127 6 | -0.025 6 | 0.829 | 0.98 | 0.00 | -0.20 | 4.31 | 23.28 | ||||
| 樟子松 | 0.552 8 | 0.009 3 | 0.773 | 1.38 | 0.00 | -0.14 | 4.49 | 21.70 | ||||
| 湿地松 | -0.300 0 | 0.005 4 | 0.896 | 0.73 | 0.00 | 0.41 | 3.03 | 14.42 | ||||
| (3) | ||||||||||||
| 马尾松 | 0.048 1 | -0.073 8 | 0.757 | 1.71 | 1.63 | 3.46 | 3.16 | 20.92 | ||||
| 油 松 | -0.262 8 | 0.383 7 | 0.844 | 1.32 | 0.98 | 4.12 | 3.57 | 19.24 | ||||
| 云南松 | -0.207 7 | 0.272 4 | 0.813 | 1.77 | 0.61 | 2.07 | 4.67 | 18.96 | ||||
| 思茅松 | 0.184 8 | -0.220 7 | 0.867 | 1.32 | -0.94 | -2.53 | 3.40 | 14.92 | ||||
| 高山松 | 0.356 7 | -0.440 3 | 0.767 | 1.65 | 0.77 | -0.18 | 4.21 | 19.32 | ||||
| 黄山松 | -0.007 7 | -0.057 5 | 0.786 | 1.40 | -4.29 | -7.91 | 4.75 | 21.63 | ||||
| 樟子松 | 0.028 8 | -0.026 4 | 0.660 | 2.29 | -0.62 | -2.15 | 6.09 | 26.05 | ||||
| 湿地松 | -0.140 2 | 0.162 6 | 0.834 | 1.12 | 0.19 | 2.48 | 3.36 | 18.50 | ||||
| [1] | ZHANG Jian, GOU Zhonghua, ZHANG Fan, et al. A study of tree crown characteristics and their cooling effects in a subtropical city of Australia[J]. Ecological Engineering, 2020,158:106027. |
| [2] | CATTANEO N, SCHNEIDER R, BRAVO F, et al. Inter-specific competition of tree congeners induces changes in crown architecture in Mediterranean pine mixtures[J]. Forest Ecology and Management, 2020,476:118471. |
| [3] |
和璐璐, 张萱, 章毓文, 等. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长的关系[J]. 植物生态学报, 2023, 47(11):1523-1539.
doi: 10.17521/cjpe.2022.0390 |
| [4] |
HUMMEL S. Height,diameter and crown dimensions of Cordia alliodora associated with tree density[J]. Forest Ecology and Management, 2000, 127(1-3):31-40.
doi: 10.1016/S0378-1127(99)00120-6 |
| [5] |
XU Hao, SUN Yujun, WANG Xinjie, et al. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian province,southeast China[J]. Plos One, 2015, 10(4):e0122257.
doi: 10.1371/journal.pone.0122257 |
| [6] | THORPE H C, ASTRUP R, TROWBRIDGE A, et al. Competition and tree crowns:A neighborhood analysis of three boreal tree species[J]. Forest Ecology and Management, 2010, 259(8):1583-1596. |
| [7] | 王艳, 王迪海, 张剑南, 等. 黄土区不同密度侧柏人工林树冠二维特征的差异[J]. 西北林学院学报, 2014, 29(3):125-128. |
| [8] | PRETZSCH H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. Forest Ecology and Management, 2014,327:251-264. |
| [9] |
BUCHACHER R, LEDERMANN T. Interregional crown width models for individual trees growing in pure and mixed stands in Austria[J]. Forests, 2020, 11(1):114.
doi: 10.3390/f11010114 |
| [10] |
GILL S J, BIGING G S, MURPHY E C. Modeling conifer tree crown radius and estimating canopy cover[J]. Forest Ecology and Management, 2000, 126(3):405-416.
doi: 10.1016/S0378-1127(99)00113-9 |
| [11] |
BECHTOLD W A. Largest crown width models for 53 species in US[J]. Western Journal of Applied Forestry, 2004, 19(4):245-251.
doi: 10.1093/wjaf/19.4.245 |
| [12] |
CONDÉS S, STERBA H. Derivation of compatible crown width equations for some important tree species of Spain[J]. Forest Ecology and Management, 2005, 217(2-3):203-218.
doi: 10.1016/j.foreco.2005.06.002 |
| [13] | 董晨, 吴保国, 韩焱云, 等. 基于修正函数的杉木人工林单木冠幅预测模型[J]. 东北林业大学学报, 2015, 43(5):49-53. |
| [14] | 符亚健, 吕飞舟, 朱光玉, 等. 华北落叶松天然次生林单木冠幅模型构建[J]. 林业资源管理, 2016(5):65-70. |
| [15] | SHARMA R P, VACEK Z, VACEK S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016,366:208-220. |
| [16] | COOMBES A, MARTIN J, SLATER D. Defining the allometry of stem and crown diameter of urban trees[J]. Urban Forestry & Urban Greening, 2019,44:126421. |
| [17] | 杨阳, 彭浩贤, 潘萍, 等. 基于混合效应的飞播马尾松林单木冠幅预测模型[J]. 江西农业大学学报, 2020, 42(5):990-1001. |
| [18] | 马爱云, 李凤日, 董利虎. 应用混合效应法建立的杂种落叶松人工林单木冠幅预测模型[J]. 东北林业大学学报, 2021, 49(3):9-14. |
| [19] | 邱思玉, 孙玉军. 长白落叶松人工林单木冠幅模型[J]. 东北林业大学学报, 2021, 49(2):49-53. |
| [20] | 张晓芳, 郭旭展, 洪亮, 等. 冬奥核心区华北落叶松和白桦单木冠幅预测模型:组级贝叶斯模型、加性模型和混合效应模型比较[J]. 林业科学, 2022, 58(10):89-100. |
| [21] |
TIAN Dongyuan, HE Pei, JIANG Lichun, et al. Developing crown width model for mixed forests using soil,climate and stand factors[J]. The Journal of Ecology, 2024, 112(2):427-442.
doi: 10.1111/jec.v112.2 |
| [22] | QIN Yangping, WU Biyun, LEI Xiangdong, et al. Prediction of tree crown width in natural mixed forests using deep learning algorithm[J]. Forest Ecosystem, 2023,10:100109. |
| [23] | 卢军, 李凤日, 张会儒, 等. 帽儿山天然次生林主要树种冠长率[J]. 林业科学, 2011, 47(6):70-76. |
| [24] | BIANCHI S, SIIPILEHTO J, HYNYNEN J. How structural diversity affects Norway spruce crown characteristics[J]. Forest Ecology and Management, 2020,461:117932. |
| [25] |
贺梦莹, 董利虎, 李凤日. 长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型[J]. 南京林业大学学报(自然科学版), 2021, 45(4):13-22.
doi: 10.12302/j.issn.1000-2006.202005043 |
| [26] | 夏杰, 周根苗, 易烜, 等. 基于混合效应的华北落叶松次生林单木冠长模型[J]. 中南林业科技大学学报, 2022, 42(5):44-53. |
| [27] | 刘奇峰, 陈东升, 冯健, 等. 辽东山区人工红松冠长率影响因子研究[J]. 林业科学研究, 2022, 35(6):127-134. |
| [28] |
RAUTIAINEN M, STENBERG P. Simplified tree crown model using standard forest mensuration data for Scots pine[J]. Agricultural and Forest Meteorology, 2005, 128(1-2):123-129.
doi: 10.1016/j.agrformet.2004.09.002 |
| [29] | TROXEL B, PIANA M, ASHTON M S, et al. Relationships between bole and crown size for young urban trees in the northeastern USA[J]. Urban Forestry & Urban Greening, 2013, 12(6):144-153. |
| [30] | PRETZSCH H, BIBER P, UHL E, et al. Crown size and growing space requirement of common tree species in urban centres,parks,and forests[J]. Urban Forestry & Urban Greening, 2015, 14(3):466-479. |
| [31] | 李应涛, 刘时良, 孙海龙, 等. 云冷杉针阔混交林单木枝下高和冠幅模型构建[J]. 森林与环境学报, 2022, 42(3):2890296. |
| [32] | 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社,2019:275-277. |
| [33] |
WANG Mingliang, BORDERS B E, ZHAO Dehai. An empirical comparison of two subject-specific approaches to dominant heights modeling the dummy variable method and the mixed model method[J]. Forest Ecology and Management, 2008, 255(7):2659-2669.
doi: 10.1016/j.foreco.2008.01.030 |
| [34] | ZENG Weisheng. Using nonlinear mixed model and dummy variable model approaches to construct origin-based single tree biomass equations[J]. Trees, 2015, 29(1):279. |
| [35] | 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社, 2008. |
| [1] | ZHAO Wei, ZHU Guangyu, LYU Yong. Site Index Model for Regional Cunninghamia lanceolata Plantations Based on Nonlinear Mixed Effect [J]. Forest and Grassland Resources Research, 2024, 0(3): 42-50. |
| [2] | ZHU Yali, ZHANG Jinglu, ZHANG Huifang, DILIXIATI· Baoerhan, LIAN Jiajia. Biomass Analysis and Model Development of Caragana sinica in Central Tianshan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 129-135. |
| [3] | ZENG Weisheng. Development of Carbon Growth Models and Analysis of Carbon Sequestration Capacity for Larch Forest Stands in the Northeast of China [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 18-23. |
| [4] | ZENG Weisheng. Development of Multivariate Mixed Models for Forest Volume and Biomass [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 23-28. |
| [5] | ZHANG Yuwei, ZHANG Chao, WANG Juan, LI Huayu, BAI Mingxiong, YANG Anrong. Individual Tree Crown Width Extraction and DBH Estimation Model Based on UAV Remote Sensing [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 67-75. |
| [6] | YANG Xueyun, ZENG Weisheng, CHEN Xinyun. Research on Developing Stand Volume,Biomass and Carbon Stock Models for Major Forest Types in Beijing [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 124-130. |
| [7] | ZENG Weisheng, SUN Xiangnan, WANG Liuru, WANG Wei, PU Ying. Developing Aerial Stand Volume Tables Based on Laser Scanning Data for Forest Region of Northeast China [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(1): 147-155. |
| [8] | HUANG Yanxiao, FANG Luming, HUANG Siqi, GAO Haili, YANG Laibang, LOU Xiongwei. Research on Crown Extraction Based on Improved Faster R-CNN Model [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(1): 173-179. |
| [9] | ZHU Yali, ZHANG Huifang, ZHANG Jinglu, DI lixiati·Baoerhan. Establishment of the Model for Estimating Aboveground Biomass of Populus euphratica Based on UAV Remote Sensing [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 80-87. |
| [10] | YANG Yuze, LIN Wenshu, SUN Yingwei. Study on Tree Growth Models of Dominant Tree Species in the Coniferous and Broad-leaved Mixed Forest in the Lesser Khingan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(3): 49-57. |
| [11] | FU Yajian, LÜ Feizhou, ZHU Guangyu, LÜ Yong. Construction of Crown Width Model for Single Tree of Natural Larix principis-rupprechtii Forest [J]. FOREST RESOURCES WANAGEMENT, 2016, 0(5): 65-70. |
| [12] | ZENG Weisheng, WANG Xuejun, CHEN Zhenxiong, YAO Shunbin. Analysis of Impacts of Forest Origin on Single Tree Biomass Models [J]. FOREST RESOURCES WANAGEMENT, 2014, 0(2): 40-45. |
| [13] | LIU Ping, WANG Yutao, MA Lüyi. Individual Crown Width Prediction Models and Accuracy Appraisal for Platycladus orientalis Plantation in Low Mountainous Area [J]. FOREST RESOURCES WANAGEMENT, 2014, 0(2): 52-57. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||