欢迎访问林草资源研究

林草资源研究 ›› 2024›› Issue (5): 166-178.doi: 10.13466/j.cnki.lczyyj.2024.05.018

• 综述 • 上一篇    

植被叶绿素含量的高光谱遥感反演方法研究进展

马荣菲1,2(), 陈妍2, 侯鹏1,2(), 任晓琦1,2   

  1. 1.山东科技大学 测绘与空间信息学院,山东 青岛 266590
    2.生态环境部卫星环境应用中心,北京 100094
  • 收稿日期:2024-09-02 修回日期:2024-10-10 出版日期:2024-10-28 发布日期:2025-04-18
  • 通讯作者: 侯鹏,正高级工程师,博士,主要研究方向为生态评估与环境遥感。Email:houpcy@163.com
  • 作者简介:马荣菲,硕士研究生,主要研究方向为生态遥感。Email:mrf19860918698@163.com

Progress on Hyperspectral Remote Sensing Inversion Method for Vegetation Chlorophyll Content

MA Rongfei1,2(), CHEN Yan2, HOU Peng1,2(), REN Xiaoqi1,2   

  1. 1. College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,Shandong,China
    2. Satellite Application Center for Ecology and Environment,Ministry of Ecology and Environment,Beijing 100094,China
  • Received:2024-09-02 Revised:2024-10-10 Online:2024-10-28 Published:2025-04-18

摘要:

叶绿素含量对于植物的光合作用能力至关重要,是评估植被生长状况的重要指标。叶绿素含量的测定对植物的健康状况、施肥管理以及产量评估具有显著意义。然而,传统的测量方法费时费力。近年来,高光谱遥感技术作为一种前沿技术,得到了迅速发展,利用高光谱数据进行叶绿素含量估算已成为一种重要手段。全面回顾国内外典型机载星载高光谱成像仪发展历程及其数据应用,通过查阅国内外相关文献,分析光谱植被指数构建、高光谱红边位置参数和机器学习算法3种方法在高光谱数据反演叶绿素中的优势与局限性,并指出当前高光谱遥感发展及植被叶绿素定量反演研究中存在的不足,提出未来的研究方向。

关键词: 叶绿素反演, 高光谱发展历程, 光谱指数, 红边位置, 机器学习

Abstract:

Chlorophyll content is crucial for the photosynthetic capacity of plants and serves as an important indicator of vegetation growth status.Accurate measurement of chlorophyll content is essential for assessing plant health,optimizing fertilizer management,and evaluating crop yields.However,traditional measurement methods are time-consuming and labor-intensive.In recent years,hyperspectral remote sensing technology has been rapidly developing as a cutting-edge technology,and using hyperspectral data for estimating chlorophyll content has become an important approach.This paper provides a comprehensively review of the development of typical airborne star-borne hyperspectral imagers both domestically and internationally.By analyzing relevant literature,the paper analyzes the advantages and limitations of three methods,namely,spectral vegetation index construction,hyperspectral red-edge positional parameters and machine learning algorithms,in inverting chlorophyll from hyperspectral data,and points out the shortcomings of the current development of hyperspectral remote sensing and the research on quantitative inversion of vegetation chlorophyll,and proposes the future research direction.

Key words: chlorophyll inversion, hyperspectral development history, spectral indices, red-edge position, machine learning

中图分类号: