欢迎访问林草资源研究

林草资源研究 ›› 2024›› Issue (4): 78-83.doi: 10.13466/j.cnki.lczyyj.2024.04.009

• 科学研究 • 上一篇    下一篇

林业中互为自因变量模型拟合方法研究

曾伟生()   

  1. 国家林业和草原局林草调查规划院,北京 100714
  • 收稿日期:2024-04-15 修回日期:2024-07-09 出版日期:2024-08-28 发布日期:2025-04-18
  • 作者简介:曾伟生,教授级高级工程师,博士,主要从事森林资源调查监测与林业数学建模等工作。Email:zengweisheng0928@126.com
  • 基金资助:
    国家重点研发计划项目“森林立地质量评价与全周期多功能经营关键技术”(2022YFD2200501)

Fitting Methods of Mutual Dependent Variable Models in Forestry

ZENG Weisheng()   

  1. Academy of Inventory and Planning,National Forestry and Grassland Administration,Beijing 100714,China
  • Received:2024-04-15 Revised:2024-07-09 Online:2024-08-28 Published:2025-04-18

摘要:

互为自因变量模型的拟合可以采用对偶回归方法,但在应用时必须提供两个变量之间的误差结构关系,且统计之林(ForStat)中只在线性度量误差模型中涉及该方法的应用,给林业建模工作带来不便。利用东北地区100个红松林样地的优势高、平均高和平均胸径实测数据,分析了在拟合林分优势高与平均高模型、平均高与平均胸径模型时存在的两条回归线问题,进一步研究提出通过引入哑变量区分两条回归线,再采用非线性误差变量联立方程组或利用多元非线性回归估计方法求解各类互为自因变量模型参数的两种新方法。新方法不仅适用于林分优势高与平均高等常见的线性模型,也适用于林分平均高与平均胸径等非线性模型。

关键词: 互为自因变量, 两条回归线, 对偶回归, 哑变量, 联立方程组, 多元回归

Abstract:

The dual regression method can be used to fit the mutual dependent variable models,however,the error structure relationship between the two variables must be provided in application,and this method is only applicable to the linear error-in-variable model in ForStat,which brings inconvenience to forestry modeling.Using the measured data of dominant height(H0),mean height(H)and mean diameter at breast height(D)from 100 sample plots in Pinus koraiensis forests in northeastern China,this paper demonstrates two regression lines in fitting the H0-H model and the H-D model.Two new methods are proposed by introducing dummy variables to distinguish two regression lines,followed by the use of nonlinear simultaneous equations with error-in-variables or multivariate nonlinear regression estimation method to estimate the parameters of mutual dependent variable models.These new methods are applicable not only to common linear models such as the H0-H model,but also to nonlinear models such as the H-D model.

Key words: mutual dependent variable, two regression lines, dual regression, dummy variable, simultaneous equations, multivariate regression

中图分类号: