Forest and Grassland Resources Research ›› 2024›› Issue (6): 129-139.doi: 10.13466/j.cnki.lczyyj.2024.06.015
• Technical Application • Previous Articles Next Articles
MA Yuan1(
), WANG Zhibo2(
), YE Dongmei1, LIU Fengling3
Received:2024-05-30
Revised:2024-10-30
Online:2024-12-28
Published:2025-04-18
CLC Number:
MA Yuan, WANG Zhibo, YE Dongmei, LIU Fengling. Construction of Compatibility Models for Aboveground Biomass of Individual Trees in Larix gmelinii var.principis-rupprechtii plantation[J]. Forest and Grassland Resources Research, 2024, (6): 129-139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2024.06.015
Tab.1
Basic tree measurement factors and component biomass information in Larix gmelinii var.principis-rupprechtii plantation
| 统计量 | 林龄/a | 胸径/cm | 树高/m | 生物量/kg | |||
|---|---|---|---|---|---|---|---|
| 树干 | 树枝 | 树叶 | 地上部分 | ||||
| 平均值 | 34.977 | 19.476 | 14.326 | 103.703 | 27.353 | 5.984 | 103.703 |
| 标准差 | 9.610 | 4.768 | 3.798 | 68.135 | 14.113 | 2.313 | 68.135 |
| 最大值 | 49.000 | 29.730 | 22.910 | 294.892 | 62.267 | 10.914 | 294.892 |
| 最小值 | 16.000 | 10.670 | 7.650 | 18.607 | 5.884 | 1.850 | 18.607 |
Tab.4
Parameter estimation and evaluation statistical index of independent foundation model
| 模型类型 | 部位 | 模型编号 | 参数 | 评价指标 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| a | b | c | R2 | RMSE/kg | TRE/% | MAPE/% | P/% | |||
| 一元 | 树干 | 1 | 0.036 0 | 2.637 4 | 0.925 | 18.459 | 1.473 | 13.129 | 94.5 | |
| 2 | 0.126 8 | 2.471 1 | 0.958 | 13.807 | 0.950 | 13.615 | 95.9 | |||
| 树枝 | 1 | 0.052 2 | 2.082 0 | 0.862 | 5.179 | 1.606 | 16.470 | 94.1 | ||
| 树叶 | 1 | 0.099 0 | 1.370 0 | 0.766 | 1.107 | 1.905 | 16.905 | 94.2 | ||
| 地上 | 1 | 0.085 7 | 2.447 9 | 0.941 | 20.030 | 1.051 | 11.412 | 95.5 | ||
| 二元 | 树干 | 4 | 0.047 2 | 1.403 0 | 1.278 0 | 0.984 | 8.517 | 0.124 | 6.411 | 97.5 |
| 树枝 | 4 | 0.052 5 | 2.055 5 | 0.027 4 | 0.862 | 5.183 | 1.596 | 16.453 | 94.1 | |
| 树叶 | 4 | 0.100 7 | 1.293 0 | 0.079 8 | 0.767 | 1.105 | 1.893 | 16.823 | 94.2 | |
| 地上 | 4 | 0.104 7 | 1.530 1 | 0.950 3 | 0.980 | 11.636 | 0.256 | 7.370 | 97.4 | |
Tab.5
Evaluation statistical indices and parameter estimation of one variable compatible model
| 部位 | 方法编号 | 参数估计值 | 评价指标 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| a | b | R2 | RMSE/kg | TRE/% | MAPE/% | P/% | |||
| 树干 | Ⅰ | 0.039 6 | 2.632 0 | 0.924 | 18.530 | 1.188 | 13.107 | 94.2 | |
| Ⅱ | 0.041 8 | 2.615 4 | 0.924 | 18.580 | 1.310 | 13.113 | 93.9 | ||
| Ⅲ | 0.033 4 | 2.666 7 | 0.927 | 18.216 | -0.007 | 12.879 | 94.6 | ||
| 树枝 | Ⅰ | 0.070 3 | 2.012 1 | 0.863 | 5.170 | 0.613 | 16.240 | 93.9 | |
| Ⅱ | 0.066 4 | 2.033 5 | 0.863 | 5.165 | 0.229 | 16.265 | 93.7 | ||
| Ⅲ | 0.065 3 | 2.013 9 | 0.863 | 5.160 | 0.001 | 16.341 | 94.2 | ||
| 树叶 | Ⅰ | 0.086 0 | 1.445 3 | 0.768 | 1.100 | 0.701 | 16.647 | 94.1 | |
| Ⅱ | 0.087 9 | 1.440 6 | 0.769 | 1.100 | 0.368 | 16.563 | 93.8 | ||
| Ⅲ | 0.080 6 | 1.443 3 | 0.770 | 1.096 | 0.291 | 16.521 | 94.3 | ||
| 地上总量 | Ⅰ | 0.085 7 | 2.447 9 | 0.941 | 20.030 | 1.051 | 11.412 | 95.5 | |
| Ⅱ | 0.085 7 | 2.447 9 | 0.941 | 20.030 | 1.051 | 11.412 | 95.5 | ||
| Ⅲ | 0.943 | 19.675 | 0.007 | 11.278 | 95.6 | ||||
Tab.6
Evaluation statistical indicesand parameter estimation of two variable compatible model
| 部位 | 方法编号 | 参数估计值 | 评价指标 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| a | b | c | R2 | RMSE/kg | TRE/% | MAPE/% | P/% | ||
| 树干 | Ⅰ | 0.060 5 | 1.235 4 | 1.405 5 | 0.984 | 8.449 | 0.178 | 6.503 | 97.3 |
| Ⅱ | 0.057 8 | 1.321 8 | 1.318 6 | 0.984 | 8.523 | 0.192 | 6.471 | 97.6 | |
| Ⅲ | 0.056 1 | 1.215 3 | 1.424 1 | 0.985 | 8.184 | 0.016 | 6.507 | 97.9 | |
| 树枝 | Ⅰ | 0.063 1 | 2.143 5 | -0.101 8 | 0.863 | 5.161 | 0.450 | 16.369 | 93.7 |
| Ⅱ | 0.059 5 | 2.109 2 | -0.050 0 | 0.864 | 5.150 | 0.462 | 16.335 | 94.6 | |
| Ⅲ | 0.064 8 | 2.025 7 | -0.010 3 | 0.863 | 5.160 | 0.002 | 16.346 | 95.0 | |
| 树叶 | Ⅰ | 0.087 0 | 1.372 6 | 0.081 6 | 0.768 | 1.102 | 0.718 | 16.679 | 93.8 |
| Ⅱ | 0.091 0 | 1.320 5 | 0.116 6 | 0.769 | 1.100 | 0.421 | 16.474 | 94.7 | |
| Ⅲ | 0.082 1 | 1.364 9 | 0.080 5 | 0.771 | 1.095 | 0.324 | 16.436 | 95.2 | |
| 地上总量 | Ⅰ | 0.104 7 | 1.530 1 | 0.950 3 | 0.980 | 11.636 | 0.256 | 7.370 | 97.4 |
| Ⅱ | 0.104 7 | 1.530 1 | 0.950 3 | 0.980 | 11.636 | 0.256 | 7.370 | 97.4 | |
| Ⅲ | 0.981 | 11.385 | 0.027 | 7.417 | 97.2 | ||||
| [1] | 董利虎, 李凤日, 贾炜玮. 黑龙江省红松人工林立木生物量估算模型的研建[J]. 北京林业大学学报, 2012, 34(6):16-22. |
| [2] | 王为斌, 党永峰, 曾伟生. 东北落叶松相容性立木材积和地上生物量方程研建[J]. 林业资源管理, 2012(2):69-73. |
| [3] | 曹梦, 潘萍, 欧阳勋志, 等. 天然次生林中闽楠生物量分配特征及相容性模型[J]. 浙江农林大学学报, 2019, 36(4):764-773. |
| [4] | 白志强, 李缓, 王文栋. 阿尔泰山优势树种的生物量模型构建及其生物量分配特征[J]. 林业资源管理, 2018(4):34-40. |
| [5] | 肖生苓, 杨嘉龙. 大兴安岭北部兴安落叶松天然林单木地上生物量[J]. 林业科学, 2014, 50(8):22-29. |
| [6] | 王柯人, 舒清态, 赵洪莹, 等. 高山松单木地上生物量模型不确定性研究[J]. 西南林业大学学报(自然科学), 2021, 41(2):100-106. |
| [7] | 黄兴召, 孙晓梅, 张守攻, 等. 辽东山区日本落叶松生物量相容性模型的研究[J]. 林业科学研究, 2014, 27(2):142-148. |
| [8] | 罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8):129-134. |
| [9] |
刘琪璟. 嵌套式回归建立树木生物量模型[J]. 植物生态学报, 2009, 33(2):331-337.
doi: 10.3773/j.issn.1005-264x.2009.02.010 |
| [10] | 郭孝玉, 孙玉军, 刘凤娇. 不同估算树冠生物量方法的比较:以长白落叶松林为例[J]. 林业资源管理, 2010(5):41-47. |
| [11] |
Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1):87-99.
doi: 10.1007/s00442-005-0100-x pmid: 15971085 |
| [12] | 刘秀红, 姜春前, 徐睿, 等. 相容性单木生物量模型估计方法的比较:以青冈栎为例[J]. 林业科学, 2020, 56(9):164-173. |
| [13] | MUUKKONEN P. Generalized allometric volume and biomass equations for some tree species in Europe[J]. European Journal of Forest Research, 2007, 126(2):157-166. |
| [14] | 贾炜玮, 李凤日, 董利虎, 等. 基于相容性生物量模型的樟子松林碳密度与碳储量研究[J]. 北京林业大学学报, 2012, 34(1):6-13. |
| [15] | LAMBERT M C, UNG C H, RAULIER F, et al. Canadian national tree aboveground biomass equations[J]. Canadian Journal of Forest Research, 2005, 35(8):1996-2018. |
| [16] | 洪奕丰, 陈东升, 申佳朋, 等. 长白落叶松人工林单木和林分水平的相容性生物量模型研究[J]. 林业科学研究, 2019, 32(4):33-40. |
| [17] | 曾伟生, 唐守正. 利用度量误差模型方法建立相容性立木生物量方程系统[J]. 林业科学研究, 2010, 23(6):797-802. |
| [18] | 张会儒, 赵有贤, 王学力, 等. 应用线性联立方程组方法建立相容性生物量模型研究[J]. 林业资源管理, 1999(6):63-67. |
| [19] | 骆期邦, 曾伟生, 贺东北, 等. 立木地上部分生物量模型的建立及其应用研究[J]. 自然资源学报, 1999(3):80-86. |
| [20] | 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000(S1):19-27. |
| [21] | 符利勇, 雷渊才, 曾伟生. 几种相容性生物量模型及估计方法的比较[J]. 林业科学, 2014, 50(6):42-54. |
| [22] | 王志波, 季蒙, 李永乐. 华北落叶松人工林差分地位指数模型构建[J]. 林业资源管理, 2021(1):156-163. |
| [23] | 王柯人, 罗文秀, 舒清态, 等. 龙竹人工林的含水率分析及地上生物量回归模型构建[J]. 西南林业大学学报(自然科学), 2021, 41(6):168-174. |
| [24] | 姜鹏, 董树国, 隋玉龙, 等. 北沟林场华北落叶松生物量模型的研究[J]. 中南林业科技大学学报, 2013, 33(7):131-135. |
| [25] | 常月梅, 张百川. 不同年龄阶段华北落叶松单株生物量的研究[J]. 河北林业科技, 2017(3):27-29. |
| [26] | CASE B S, HALL R J. Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada[J]. Canadian Journal of Forest Research, 2008, 38(6):878-889. |
| [27] | 兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3):416-423. |
| [28] | 黄光灿, 吴宏炜, 赖建明, 等. 福建木荷地上部分相容性生物量模型研究[J]. 西南林业大学学报(自然科学), 2020, 40(2):125-134. |
| [29] | 尹惠妍, 张志伟, 李海奎. 中国主要乔木树种生物量方程[J]. 中南林业科技大学学报, 2019, 39(5):63-69. |
| [30] | SALIS S M, ASSIS M A, MATTOS P P, et al. Estimating the aboveground biomass and wood volume of savanna woodlands inBrazil's Pantanal wetlans based on allometric correlations[J]. Forest Ecology and Management, 2006, 228(1):61-68. |
| [31] | 刘坤, 曹林, 汪贵斌. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017, 39(4):12-20. |
| [32] | 符利勇, 雷渊才, 孙伟, 等. 不同林分起源的相容性模型构建. 生态学报, 2014, 34(6):1461-1470. |
| [33] | 曾伟生. 加权回归估计中不同权函数的对比分析[J]. 林业资源管理, 2013(5):55-61. |
| [34] | BERK N K. Validating regression procedures with new data[J]. Technometrics, 2012, 26(4):331-338. |
| [35] | SHAO Jun. Linear model selection by cross-validation[J]. Journal of the American Statistical Association, 2012, 88(422):486-494. |
| [36] | KOZAK A, KOZAK R. Does cross validation provide additional information in the evaluation of regression models?[J]. Canadian Journal of Forest Research, 2003, 33(6):976-987. |
| [37] | 曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106-113. |
| [38] |
郑雪婷, 仪律北, 李强峰, 等. 青藏高原典型人工林幼树生物量模型构建[J]. 应用生态学报, 2022, 33(11):2923-2935.
doi: 10.13287/j.1001-9332.202211.009 |
| [39] | 王微, 王冰, 张向龙, 等. 内蒙古大兴安岭天然白桦生物量估算模型[J]. 西北林学院学报, 2023, 38(6):180-188. |
| [40] |
梁瑞婷, 王轶夫, 邱思玉, 等. 人工神经网络与相容性生物量模型预测单木地上生物量的比较[J]. 应用生态学报, 2022, 33(1):9-16.
doi: 10.13287/j.1001-9332.202201.001 |
| [1] | ZENG Weisheng. Fitting Methods of Mutual Dependent Variable Models in Forestry [J]. Forest and Grassland Resources Research, 2024, 0(4): 78-83. |
| [2] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
| [3] | CAI Huide, LU Feng, XU Zhanyong, PAN Huangru, MENG Xiang, ZENG Weisheng. Research and Development of Compatible and Additive Individual Tree Biomass Model Systems for Eucalyptus [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 87-93. |
| [4] | ZHU Yali, ZHANG Jinglu, ZHANG Huifang, DILIXIATI· Baoerhan, LIAN Jiajia. Biomass Analysis and Model Development of Caragana sinica in Central Tianshan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 129-135. |
| [5] | TANG Jinhao, ZHANG Jialong, CHEN Liye, CHENG Tao. Research on Estimation of Aboveground Biomass and Scale Conversion for Pinus densata Mast [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 83-89. |
| [6] | WU Fayun, GAO Xianlian, ZHOU Rong, WANG Pengjie, FU Anmin. Research on Forest Biomass and Stock Volume Model Based on Stand Height and Canopy Density [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 61-67. |
| [7] | ZENG Weisheng, SUN Xiangnan, WANG Liuru, WANG Wei, PU Ying. Estimating Forest Volume, Mean Height and Basal Area Based on Airborne Laser Scanning Data [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 79-86. |
| [8] | ZHU Yali, ZHANG Huifang, ZHANG Jinglu, DI lixiati·Baoerhan. Establishment of the Model for Estimating Aboveground Biomass of Populus euphratica Based on UAV Remote Sensing [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 80-87. |
| [9] | WANG Zixuan, ZHOU Mei, ZHAO Pengwu, WANG Ding, YANG Lei, DING Zhaohua. Study on Species Diversity and Aboveground Biomass of Burned Phytocoenosium under Different Burntwood Management Modes —Taking Frigid-temperate Zone Larix gmelini as an Example [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(4): 28-33. |
| [10] | ZENG Weisheng. Developing One-variable Individual Tree Biomass Models Based on Wood Density for 34 Tree Species in China [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(6): 41-46. |
| [11] | YANG Ying,RAN Qixiang,CHEN Xinyun,OU Qiangxin. Research on Dummy Variable in Aboveground Biomass Models for Spruce [J]. FOREST RESOURCES WANAGEMENT, 2015, 0(6): 71-76. |
| [12] | MA Yingbin,HAO Yuguang,HUANG Yaru,XU Jun. Research on Characteristics of Two Kinds of Natural Vegetation in the Oasis Edge of the Northeast Ulanbuh Desert [J]. FOREST RESOURCES WANAGEMENT, 2015, 0(5): 76-80. |
| [13] | GUO Xinyu, CAO Zhong, FENG Zhongke, SHEN Dengeng, XuHaoxiang, FAN Yongiang. Research of compatible One-Way and Two-way Tree Volume Models of Prunus armeniaca and Aspen in Gansu Province [J]. FOREST RESOURCES WANAGEMENT, 2015, 0(2): 70-75. |
| [14] | ZENG Weisheng, BAI Jinxian, SONG Liancheng, XING Lijun, WANG Xuejun, ZHAO Xuejun, ZHANG Zhenrong. Biomass Modeling for Caragana microphylla in Inner Mongolia [J]. FOREST RESOURCES WANAGEMENT, 2014, 0(6): 58-62. |
| [15] | DU PengZhi, XUE Kang, ZENG WeiSheng, FENG ZhongKe, CAO Zhong. Developing Compatible Tree Volume Equations for Populus in Beijing [J]. FOREST RESOURCES WANAGEMENT, 2014, 0(5): 51-57. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||