Forest and Grassland Resources Research ›› 2025›› Issue (3): 109-118.doi: 10.13466/j.cnki.lczyyj.2025.03.013
• Technical Application • Previous Articles Next Articles
ZENG Weisheng1(
), WEN Xuexiang1, LI Xiaoyao2, TAN Bingxiang2, SUN Xiangnan1, LIU Qiangyi1, WANG Tian1
Received:2025-03-25
Revised:2025-05-19
Online:2025-06-28
Published:2026-01-07
CLC Number:
ZENG Weisheng, WEN Xuexiang, LI Xiaoyao, TAN Bingxiang, SUN Xiangnan, LIU Qiangyi, WANG Tian. Establishment and application of simultaneous models for estimating main stand characteristics based on Sentinel-2 data in Beijing[J]. Forest and Grassland Resources Research, 2025, (3): 109-118.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2025.03.013
Tab.1
The statistics of major eight stand factors for modeling plots
| 统计特征 | 平均胸径 (D)/cm | 平均高 (H)/m | 优势高 (Hd)/m | 株数 (N)/(株/hm2) | 断面积 (G)/(m2/hm2) | 蓄积量 (V)/(m3/hm2) | 生物量 (B)/(t/hm2) | 碳储量 (C)/(t/hm2) |
|---|---|---|---|---|---|---|---|---|
| 平均数 | 14.0 | 8.8 | 10.3 | 771 | 10.8 | 59.0 | 68.8 | 33.2 |
| 最小值 | 5.0 | 1.9 | 2.0 | 15 | 0.1 | 0.1 | 0.1 | 0.1 |
| 最大值 | 44.8 | 27.4 | 28.1 | 4 110 | 43.9 | 435.4 | 338.6 | 163.7 |
| 标准差 | 6.1 | 3.9 | 4.4 | 598 | 7.8 | 57.5 | 54.9 | 26.5 |
| 变动系数/% | 43.6 | 44.2 | 42.4 | 77.6 | 72.8 | 97.4 | 79.7 | 79.7 |
Tab.2
The parameter estimates of simultaneous models(9)for three main forest types
| 森林类型 | 林分因子 | 解释变量 | 联立模型(9)的参数估计值 | |||
|---|---|---|---|---|---|---|
| a0~g0 | a1~f1 | a2~d2 | a3~d3 | |||
| 针叶林 (n=400) | D | X2 | 2.262 | -1.219 | ||
| H | X3 | 0.756 1 | -1.283 | |||
| G | X2、X3 | 8.059 | -13.98 | -12.15 | ||
| V | X2、X3 | 10.48 | -14.67 | -16.17 | ||
| Hd | -0.562 4 | 1.285 | ||||
| B | 0.437 5 | 1.218 | ||||
| C | 0.497 2 | |||||
| 硬阔林 (n=800) | D | X2、X3、X4 | 1.576 | -3.223 | 1.388 | 0.321 0 |
| H | X2、X4 | 1.419 | -1.218 | 0.213 5 | ||
| G | X2、X3、X4 | 4.066 | -5.223 | -10.52 | 0.497 0 | |
| V | X2、X3、X4 | 6.424 | -8.478 | -10.69 | 0.551 5 | |
| Hd | -0.092 6 | 1.214 | ||||
| B | 1.424 | 1.441 | ||||
| C | 0.479 6 | |||||
| 软阔林 (n=300) | D | X1、X2、X3 | 1.532 | -1.023 | -5.612 | 4.050 |
| H | X1、X2、X3 | 0.595 5 | -1.658 | -3.862 | 2.948 | |
| G | X1、X2、X3 | 7.779 | -18.83 | -20.04 | 17.42 | |
| V | X1、X2、X3 | 11.99 | -25.59 | -31.71 | 28.86 | |
| Hd | 1.272 | 1.032 | ||||
| B | 6.004 | 0.849 6 | ||||
| C | 0.480 8 | |||||
Tab.3
The evaluation indexes of simultaneous models for three main forest types
| 森林 类型 | 林分 因子 | 自检结果 | 交叉检验结果 | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | ESE | ETR/% | EAS/% | EMP/% | EMPS/% | R2 | ESE | ETR/% | EAS/% | EMP/% | EMPS/% | |||||||
| 针叶林 | D | 0.266 | 3.09 cm | 5.05 | 6.27 | 2.51 | 26.90 | 0.257 | 3.11 cm | 5.04 | 6.37 | 2.53 | 27.15 | |||||
| H | 0.305 | 1.80 m | 3.09 | 3.70 | 2.67 | 28.54 | 0.302 | 1.80 m | 3.08 | 3.74 | 2.68 | 28.65 | ||||||
| Hd | 0.332 | 2.13 m | 2.43 | 2.85 | 2.65 | 28.58 | 0.328 | 2.13 m | 2.40 | 2.90 | 2.66 | 28.67 | ||||||
| G | 0.661 | 3.70 m2/hm2 | 1.48 | 5.57 | 3.91 | 39.23 | 0.649 | 3.77 m2/hm2 | 1.24 | 5.57 | 3.98 | 39.57 | ||||||
| N | 0.282 | 402株/hm2 | 3.11 | 7.03 | 4.91 | 49.93 | 0.282 | 403株/hm2 | 2.98 | 6.95 | 4.91 | 50.23 | ||||||
| V | 0.639 | 22.20 m3/hm2 | -0.84 | -1.02 | 5.16 | 48.13 | 0.623 | 22.70 m3/hm2 | -1.20 | -0.95 | 5.27 | 48.54 | ||||||
| B | 0.494 | 26.80 t/hm2 | -6.27 | -0.63 | 5.37 | 45.99 | 0.469 | 27.50 t/hm2 | -6.60 | -0.57 | 5.50 | 46.45 | ||||||
| C | 0.520 | 13.10 t/hm2 | -6.12 | -1.19 | 5.26 | 45.24 | 0.495 | 13.40 t/hm2 | -6.45 | -1.11 | 5.40 | 45.74 | ||||||
| 硬阔林 | D | 0.407 | 3.00 cm | 1.28 | 1.52 | 1.59 | 18.34 | 0.399 | 3.02 cm | 1.26 | 1.52 | 1.60 | 18.44 | |||||
| H | 0.321 | 1.95 m | 0.89 | 0.50 | 1.65 | 18.47 | 0.316 | 1.96 m | 0.84 | 0.48 | 1.66 | 18.56 | ||||||
| Hd | 0.327 | 2.32 m | 0.41 | -0.06 | 1.64 | 18.55 | 0.322 | 2.33 m | 0.37 | -0.08 | 1.64 | 18.63 | ||||||
| G | 0.606 | 3.88 m2/hm2 | 7.48 | 6.38 | 3.01 | 31.13 | 0.604 | 3.89 m2/hm2 | 7.47 | 6.51 | 3.02 | 31.33 | ||||||
| N | 0.425 | 360株/hm2 | 8.75 | 11.99 | 3.57 | 38.34 | 0.418 | 362株/hm2 | 8.83 | 12.39 | 3.59 | 38.77 | ||||||
| V | 0.576 | 23.70 m3/hm2 | 4.62 | 0.22 | 3.86 | 36.95 | 0.574 | 23.70 m3/hm2 | 4.61 | 0.32 | 3.86 | 37.12 | ||||||
| B | 0.595 | 28.20 t/hm2 | -1.61 | -1.83 | 3.31 | 32.34 | 0.592 | 28.30 t/hm2 | -1.59 | -1.72 | 3.32 | 32.52 | ||||||
| C | 0.592 | 13.60 t/hm2 | -1.54 | -1.72 | 3.32 | 32.59 | 0.589 | 13.60 t/hm2 | -1.52 | -1.60 | 3.34 | 32.76 | ||||||
| 软阔林 | D | 0.408 | 5.75 cm | 4.72 | 5.97 | 3.46 | 24.33 | 0.399 | 5.80 cm | 4.58 | 5.98 | 3.48 | 24.58 | |||||
| H | 0.554 | 3.25 m | 0.43 | -0.73 | 3.01 | 21.92 | 0.545 | 3.29 m | 0.47 | -0.61 | 3.04 | 22.13 | ||||||
| Hd | 0.528 | 3.54 m | 0.23 | -0.81 | 2.89 | 20.99 | 0.517 | 3.58 m | 0.26 | -0.71 | 2.92 | 21.26 | ||||||
| G | 0.521 | 4.56 m2/hm2 | 8.18 | 9.46 | 5.11 | 38.38 | 0.507 | 4.63 m2/hm2 | 7.59 | 9.38 | 5.19 | 38.86 | ||||||
| N | 0.290 | 198株/hm2 | 5.35 | 8.30 | 5.72 | 41.49 | 0.263 | 201株/hm2 | 5.06 | 8.47 | 5.82 | 42.18 | ||||||
| V | 0.482 | 45.90 m3/hm2 | -5.74 | -5.49 | 7.04 | 42.07 | 0.450 | 47.30 m3/hm2 | -6.34 | -5.50 | 7.26 | 42.21 | ||||||
| B | 0.307 | 39.30 t/hm2 | -9.45 | -4.20 | 6.78 | 38.06 | 0.265 | 40.40 t/hm2 | -9.96 | -4.31 | 6.98 | 38.23 | ||||||
| C | 0.275 | 19.00 t/hm2 | -10.02 | -4.24 | 6.87 | 38.05 | 0.232 | 19.60 t/hm2 | -10.51 | -4.35 | 7.07 | 38.26 | ||||||
| [1] | 薛春泉, 陈振雄, 杨加志, 等. 省市县一体化森林碳储量估测技术体系:以广东省为例[J]. 林业资源管理, 2022(4):157-163. |
| [2] | 曾伟生, 杨学云, 孙乡楠, 等. 森林资源调查监测中各级储量数据的一体化方法研究[J]. 林业资源管理, 2022(4):13-19. |
| [3] | 庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105. |
| [4] | 曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据估计林分蓄积量及平均高和断面积[J]. 林业资源管理, 2020(2):79-86. |
| [5] | 曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2):31-38. |
| [6] |
袁钰娜, 彭道黎, 王威, 等. 利用机载激光雷达技术估测东北林区典型针叶林的蓄积量[J]. 应用生态学报, 2021, 32(3):836-844.
doi: 10.13287/j.1001-9332.202103.001 |
| [7] | 李春干, 李振. 机载激光雷达大区域亚热带森林参数估测的普适性模型式[J]. 林业科学, 2021, 57(10):23-35. |
| [8] | ZOU Wentao, ZENG Weisheng, SUN Xiangnan. Simultaneous models for the estimation of main forest parameters based on airborne LiDAR data[J]. Forests, 2024, 15:775. |
| [9] |
WANG Bing, JIA Kun, LIANG Shunlin, et al. Assessment of Sentinel-2 MSI spectral band reflectances for estimating fractional vegetation cover[J]. Remote Sensing, 2018, 10(12):1927.
doi: 10.3390/rs10121927 |
| [10] |
REES W G, TOMANEY J, TUTUBALIA O, et al. Estimation of boreal forest growing stock volume in Russia from Sentinel-2 MSI and land cover classification[J]. Remote Sensing, 2021, 13(21):4483.
doi: 10.3390/rs13214483 |
| [11] |
FANG Gengsheng, HE Xiaobing, WENG Yuhui, et al. Texture features derived from Sentinel-2 vegetation indices for estimating and mapping forest growing stock volume[J]. Remote Sensing, 2023, 15(11):2821.
doi: 10.3390/rs15112821 |
| [12] | 龙依, 蒋馥根, 孙华, 等. 基于HLS数据的森林蓄积量遥感反演[J]. 森林与环境学报, 2021, 41(6):62-70. |
| [13] | 吴胜义, 王义贵, 王飞, 等. 基于多距离度量kNN模型的森林蓄积量反演[J]. 中南林业科技大学学报, 2023, 43(2):15-23. |
| [14] |
LIN Hui, ZHAO Wangguo, LONG Jiangping, et al. Mapping forest growing stem volume using novel feature evaluation criteria based on spectral saturation in planted Chinese for forest[J]. Remote Sensing, 2023, 15(2):402.
doi: 10.3390/rs15020402 |
| [15] |
NAIK P, DALPONTE M, BRUZZONE L. Prediction of forest aboveground biomass using multitemporal multispectral remote sensing data[J]. Remote Sensing, 2021, 13(7):1282.
doi: 10.3390/rs13071282 |
| [16] |
WAI P, SU Huiyi, LI Mingshi. Estimating aboveground biomass of two different forest types in Myanmar from Sentinel-2 data with machine learning and geostatistical algorithms[J]. Remote Sensing, 2022, 14(9):2146.
doi: 10.3390/rs14092146 |
| [17] | 白嘎力, 萨如拉, 滑永春, 等. 基于哨兵2遥感影像的根河林区森林地上生物量估算[J]. 内蒙古林业调查设计, 2023, 46(2):25-30. |
| [18] |
CHEN Xinyang, YANG Kemig, MA Jiang, et al. Aboveground biomass inversion based on object-oriented classification and pearson-mRMR-machine learning model[J]. Remote Sensing, 2024, 16(9):1537.
doi: 10.3390/rs16091537 |
| [19] |
PEI Huiqing, OWARI T, TSUYUKI S, et al. Identifying spatial variation of carbon stock in a warm temperate forest in central Japan using Sentinrl-2 and digital elevation model data[J]. Remote Sensing, 2023, 15(8):1997.
doi: 10.3390/rs15081997 |
| [20] | 王珠娜, 胡月, 张亚昊, 等. 基于遥感影像的森林质量评价方法研究[J]. 湖北林业科技, 2022, 51(4):37-42. |
| [21] | 杨义炜, 高牧寒, 林腾. 基于哨兵2号卫星影像的建瓯市森林扰动变化监测研究[J]. 林业与生态科学, 2023, 38(4):106-113. |
| [22] |
MORIN D, PLANELLS M, GUYON D, et al. Estimation and mapping of forest structure parameters from open access satellite images:development of a genetic method with a study case on coniferous plantation[J]. Remote Sensing, 2019, 11(11):1275.
doi: 10.3390/rs11111275 |
| [23] |
LI Xinyu, ZHANG Meng, LONG Jiangping, et al. A novel method for estimating spatial distribution of forest above-ground biomass based on multispectral fusion data and ensemble learning algorithm[J]. Remote Sensing, 2021, 13(19):3910.
doi: 10.3390/rs13193910 |
| [24] |
WU Xiangqian, SHEN Xin, ZHANG Zhengnan, et al. An advanced framework for multi-scale forest structural parameter estimations based on UAS-LiDAR and Sentinel-2 satellite imagery in forest plantations of northern China[J]. Remote Sensing, 2022, 14(13):2023.
doi: 10.3390/rs14092023 |
| [25] |
SA Rula, FAN Wengyi. Estimation of forest parameters in boreal artificial coniferous forests using Landsat 8 and Sentinel-2A[J]. Remote Sensing, 2023, 15(14):3605.
doi: 10.3390/rs15143605 |
| [26] | 邹文涛, 曾伟生, 孙乡楠. 基于机载激光雷达数据估计主要森林参数联立模型[J]. 中南林业调查规划, 2024, 43(4):32-38. |
| [27] | 曾伟生, 唐守正. 立木生物量模型的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106-113. |
| [28] | 国家林业和草原局. 2021中国林草生态综合监测评价报告. 北京: 中国林业出版社, 2023:121. |
| [29] | 国家林业局. 立木材积表:LY/T 1353—1999[S]. 北京: 中国标准出版社,1999. |
| [30] | 全国森林资源标准化技术委员会. 主要树种立木生物量模型与碳计量参数:GB/T 43648—2024[S]. 北京: 中国标准出版社, 2024. |
| [31] | 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137-143. |
| [32] | 国家林业局. 森林资源规划设计调查技术规程:GB/T 26424—2010[S]. 北京: 中国标准出版社, 2011. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||