Forest and Grassland Resources Research ›› 2025›› Issue (3): 1-8.doi: 10.13466/j.cnki.lczyyj.2025.03.001
• Review • Previous Articles Next Articles
XIE Ningbo1(
), XU Xinqiao1(
), WANG Qianpeng2, CHEN Zhibo2, YAN Ruihua1, FENG Ge1, ZHOU Qingyu1, HUANG Yuxuan1
Received:2025-03-21
Revised:2025-06-10
Online:2025-06-28
Published:2026-01-07
CLC Number:
XIE Ningbo, XU Xinqiao, WANG Qianpeng, CHEN Zhibo, YAN Ruihua, FENG Ge, ZHOU Qingyu, HUANG Yuxuan. Research advances in space-air-ground integrated monitoring for smart forestry and grassland[J]. Forest and Grassland Resources Research, 2025, (3): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2025.03.001
Tab.2
Integrated monitoring technologies and applications of forest and grass resources
| 监测 方式 | 技术类型 | 应用领域 |
|---|---|---|
| 天基 监测 | 卫星可见光、多光谱等监测分析 | 森林面积估算、森林制图、森林年龄估计、地上生物量估算等 |
| 空基 监测 | 无人机可见光、多光谱、三维点云监测分析 | 单木检测、植被覆盖度检测、森林冠层结构评估、地上生物量估算等 |
| 地基 监测 | 环境参数(如温度、湿度、光照等)传感网监测分析、物候相机观测分析 | 林草生长环境监测、植被物候期参数监测等 |
| 融合 监测 | 卫星影像与无人机激光雷达融合监测 | 森林郁闭度估测等 |
| 卫星多光谱与无人机可见光融合监测 | 半干旱山地树木衰落程度估测等 | |
| 卫星影像与无人机正射影像融合监测 | 草原木本和草本植物覆盖度估算等 | |
| 地基激光雷达与无人机摄影融合监测 | 树高估测等 | |
| 无人机调查与地面调查融合监测 | 草原植物物种调查等 | |
| 卫星影像、无人机激光雷达与地面样地融合监测 | 林场总森林蓄积量密度均值估计等 |
Tab.3
Integrated monitoring technologies and applications of wildfire
| 监测方式 | 技术类型 | 应用领域 |
|---|---|---|
| 天基 监测 | 卫星可见光、红外波段监测分析 | 大尺度范围的林草火情监测、火灾受害程度监测等 |
| 空基 监测 | 无人机可见光、激光雷达监测分析 | 重点区域的火情连续监测、可燃物类型和载量估算等 |
| 地基 监测 | 温湿度、烟雾等地面传感网监测分析 | 火险预测预警、早期火情监测等 |
| 融合 监测 | 卫星影像与无人机可见光融合监测 | 森林火烧迹地提取等 |
| 卫星多光谱与航空成像光谱、激光雷达融合监测 | 火灾后森林恢复量化评估等 | |
| 无人机通信与地面物联网融合监测 | 早期火情监测等 |
| [1] |
曹林, 周凯, 申鑫, 等. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):83-95.
doi: 10.12302/j.issn.1000-2006.202209052 |
| [2] | 王振亚. 基于信息技术的林业智慧监测管理系统[J]. 世界林业研究, 2024, 37(4):141-142. |
| [3] |
BASSULLU C, MARTÍN-ORTEGA P. Using open foris collect earth in Kyrgyzstan to support greenhouse gas inventory in the land use,land use change,and forestry sector[J]. Environmental Monitoring and Assessment, 2023, 195(8):977.
doi: 10.1007/s10661-023-11591-1 |
| [4] |
CECCHERINI G, DUVEILLER G, GRASSI G, et al. Abrupt increase in harvested forest area over Europe after 2015[J]. Nature, 2020, 583(7814):72-77.
doi: 10.1038/s41586-020-2438-y |
| [5] |
WU Zijing, ZHANG Ce, GU Xiaowei, et al. Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape[J]. Nature Communications, 2023, 14(1):3072.
doi: 10.1038/s41467-023-38901-y pmid: 37244940 |
| [6] |
AZIZI Z, MIRAKI M. Individual urban trees detection based on point clouds derived from UAV-RGB imagery and local maxima algorithm,a case study of Fateh Garden,Iran[J]. Environment,Development and Sustainability, 2024, 26(1):2331-2344.
doi: 10.1007/s10668-022-02820-7 |
| [7] |
SUN Zhao, WANG Yifu, PAN Lei, et al. Pine wilt disease detection in high-resolution UAV images using object-oriented classification[J]. Journal of Forestry Research, 2022, 33(4):1377-1389.
doi: 10.1007/s11676-021-01420-x |
| [8] |
BARMPOUTIS P, PAPAIOANNOU P, DIMITROPOULOS K, et al. A review on early forest fire detection systems using optical remote sensing[J]. Sensors, 2020, 20(22):6442.
doi: 10.3390/s20226442 |
| [9] | RICHARDSON A D. PhenoCam:An evolving,open-source tool to study the temporal and spatial variability of ecosystem-scale phenology[J]. Agricultural and Forest Meteorology, 2023, 342:109751. |
| [10] | 肖治术, 肖文宏, 王天明, 等. 中国野生动物红外相机监测与研究:现状及未来[J]. 生物多样性, 2022, 30(10):230-255. |
| [11] | 李增元, 陈尔学, 高志海, 等. 中国林业遥感技术与应用发展现状及建议[J]. 中国科学院院刊, 2013, 28(增刊):132-144. |
| [12] |
BOLÍVAR-SANTAMARÍA S, REU B. Assessing canopy structure in Andean agroforests using 3D UAV remote sensing[J]. Agroforestry Systems, 2024, 98(5):1225-1241.
doi: 10.1007/s10457-023-00865-9 |
| [13] |
刘兵兵, 魏建新, 胡天宇, 等. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析:基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10):1305-1316.
doi: 10.17521/cjpe.2022.0158 |
| [14] | 徐恩恩, 郭颖, 陈尔学, 等. 基于无人机LiDAR和高空间分辨率卫星遥感数据的区域森林郁闭度估测模型[J]. 武汉大学学报(信息科学版), 2022, 47(8):1298-1308. |
| [15] | GHASEMI M, LATIFI H, POURHASHEMI M. Integrating UAV and freely available space-borne data to describe tree decline across semi-arid mountainous forests[J]. Environmental Modeling & Assessment, 2024, 29(3):549-568. |
| [16] | 李晓雅, 田昕, 段涛, 等. 融合无人机和卫星影像的温带疏林草原木本和草本植物覆盖度遥感估算[J]. 遥感学报, 2023, 27(9):2139-2152. |
| [17] | 张吴明, 李丹, 陈一铭, 等. 联合地基激光雷达与无人机摄影测量技术提取树高研究[J]. 北京师范大学学报(自然科学版), 2018, 54(6):764-771. |
| [18] | 朱萨宁, 高吉喜, 万华伟, 等. 基于无人机和地面调查的典型草原“种-面积”关系[J]. 中国环境科学, 2024, 44(9):5169-5179. |
| [19] | 丁相元, 陈尔学, 赵磊, 等. 几种林场总体森林蓄积量密度均值估计方法的比较评价[J]. 北京林业大学学报, 2023, 45(2):11-23. |
| [20] | 张文文, 王劲, 王秋华, 等. 森林火灾遥感探测技术研究进展[J]. 西北林学院学报, 2023, 38(1):123-130. |
| [21] |
CHEN Yang, HANTSON S, ANDELA N, et al. California wildfire spread derived using VIIRS satellite observations and an object-based tracking system[J]. Scientific Data, 2022, 9(1):249.
doi: 10.1038/s41597-022-01343-0 pmid: 35637186 |
| [22] | 覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5):511-520. |
| [23] | 宫大鹏, 李炳怡, 刘晓东. 草原火烧严重度燃烧指数的适用性比较分析[J]. 生态学报, 2018, 38(7):2434-2441. |
| [24] | 祖笑锋, 覃先林, 李增元, 等. 基于幂律分布的森林燃烧生物量卫星遥感估测方法[J]. 林业科学, 2017, 53(10):90-99. |
| [25] | BOROUJENI S P H, RAZI A, KHOSHDEL S, et al. A comprehensive survey of research towards AI-enabled unmanned aerial systems in pre-,active-,and post-wildfire management[J]. Information Fusion, 2024, 108:102369. |
| [26] | FOUDA M M, SAKIB S, FADLULLAH Z M, et al. A lightweight hierarchical ai model for UAV-enabled edge computing with forest-fire detection use-case[J]. IEEE Network, 2022, 36(6):38-45. |
| [27] |
HARTLEY R J L, DAVIDSON S J, WATT M S, et al. A mixed methods approach for fuel characterisation in gorse(ulex europaeus l.)scrub from high-density UAV laser scanning point clouds and semantic segmentation of UAV imagery[J]. Remote Sensing, 2022, 14(19):4775.
doi: 10.3390/rs14194775 |
| [28] |
SINGH V K, SINGH C, RAZA H. Event classification and intensity discrimination for forest fire inference with IoT[J]. IEEE Sensors Journal, 2022, 22(9):8869-8880.
doi: 10.1109/JSEN.2022.3163155 |
| [29] |
LI Jiayong, ZHOU Guoxiong, CHEN Aibin, et al. BCMNet:cross-layer extraction structure and multiscale down-sampling network with bidirectional transpose FPN for fast detection of wildfire smoke[J]. IEEE Systems Journal, 2023, 17(1):1235-1246.
doi: 10.1109/JSYST.2022.3193951 |
| [30] |
KAUR H, SOOD S K. Energy-efficient IoT-Fog-Cloud architectural paradigm for real-time wildfire prediction and forecasting[J]. IEEE Systems Journal, 2020, 14(2):2003-2011.
doi: 10.1109/JSYST.2019.2923635 |
| [31] |
VERMA S, KAUR S, RAWAT D B, et al. Intelligent framework using IOT-based WSNs for wildfire detection[J]. IEEE Access, 2021, 9:48185-48196.
doi: 10.1109/ACCESS.2021.3060549 |
| [32] | 熊源, 徐伟恒, 黄邵东, 等. 融合可见光无人机与哨兵2A影像的森林火灾迹地精细化提取[J]. 西南林业大学学报, 2021, 41(4):103-110. |
| [33] |
SINGH S S, JEGANATHAN C. Quantifying forest resilience post forest fire disturbances using timeseries satellite data[J]. Environmental Monitoring and Assessment, 2023, 196(1):26.
doi: 10.1007/s10661-023-12183-9 |
| [34] |
TALUCCI A C, FORBATH E, KROPP H, et al. Evaluating post-fire vegetation recovery in Cajander larch forests in northeastern Siberia using UAV derived vegetation indices[J]. Remote Sensing, 2020, 12(18):2970.
doi: 10.3390/rs12182970 |
| [35] |
MENG Ran, WU Jin, ZHAO Feng, et al. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques[J]. Remote Sensing of Environment, 2018, 210:282-296.
doi: 10.1016/j.rse.2018.03.019 |
| [36] |
BUSHNAQ O M, CHAABAN A, AL-NAFFOURI T Y. The role of UAV-IOT networks in future wildfire detection[J]. IEEE Internet of Things Journal, 2021, 8(23):16984-16999.
doi: 10.1109/JIOT.2021.3077593 |
| [37] | 陶欢, 李存军, 程成, 等. 松材线虫病变色松树遥感监测研究进展[J]. 林业科学研究, 2020, 33(3):172-183. |
| [38] |
MORI N, YAMASHITA M, INOUE M N. Integration of satellite remote sensing and MaxEnt modeling for improved detection and management of forest pests[J]. Environmental Monitoring and Assessment, 2024, 196(7):616.
doi: 10.1007/s10661-024-12792-y pmid: 38874785 |
| [39] |
CAÑETE-SALINAS P, FUENTE-SÁIZ D, YÁNEZ-SEGOVIA S, et al. Use of satellite images to monitor Leucoptera sinuella leaf damage in poplar plantations in central Chile[J]. New Forests, 2024, 55(5):1181-1194.
doi: 10.1007/s11056-024-10029-x |
| [40] |
ZHOU Hongwei, YUAN Xinpei, ZHOU Huanyu, et al. Surveillance of pine wilt disease by high resolution satellite[J]. Journal of Forestry Research, 2022, 33(4):1401-1408.
doi: 10.1007/s11676-021-01423-8 |
| [41] |
MIRAKI M, SOHRABI H, FATEHI P, et al. Detection of mistletoe infected trees using UAV high spatial resolution images[J]. Journal of Plant Diseases and Protection, 2021, 128(6):1679-1689.
doi: 10.1007/s41348-021-00502-6 |
| [42] | GUERRA-HERNÁNDEZ J, DÍAZ-VARELA R A, ÁVAREZ-GONZÁLEZ J G, et al. Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests[J]. Forest Ecosystems, 2021, 8:61. |
| [43] |
NARDI D, BOZZINI A, MORGANTE G, et al. Participatory ground data are complementary to satellite bark beetle detection[J]. Annals of Forest Science, 2023, 80(1):46.
doi: 10.1186/s13595-023-01216-5 |
| [44] | 孙红, 曾庆伟. “高分七号”数据在松材线虫病松树样木监测中的应用[J]. 林业科技通讯, 2022(9):27-29. |
| [1] | ZENG Weisheng, WEN Xuexiang, LI Xiaoyao, TAN Bingxiang, SUN Xiangnan, LIU Qiangyi, WANG Tian. Establishment and application of simultaneous models for estimating main stand characteristics based on Sentinel-2 data in Beijing [J]. Forest and Grassland Resources Research, 2025, 0(3): 109-118. |
| [2] | YU Shiyong, SUN Zhichao, CI Xuelun, YAN Jiahao. Analysis of vegetation cover change and driving forces in Horqin Sandy Land using gridding [J]. Forest and Grassland Resources Research, 2025, 0(3): 119-126. |
| [3] | ZHANG Jiao, CHEN Lingxiu, DAI Hongxia, LIU Shenglong, CHEN Sitao, XU Mengjie, XIE Huili, LIU Xingzhao. Vegetation change and its drivers in the Minjiang River Basin in 2000—2020 [J]. Forest and Grassland Resources Research, 2025, 0(1): 104-113. |
| [4] | XIONG Ke, XING Yuanjun, HE Xiaofeng, TANG Lin, LU Hongwang. Remote Sensing Estimation of Forest AGB Based on KNN Algorithm [J]. Forest and Grassland Resources Research, 2024, 0(3): 106-112. |
| [5] | JI Xiu, SONG Xiaofei, HUANG Liang, LIU Wenjian, YI Xuan, ZHANG Ya’ni. Prediction of Potential Suitable Areas for Fagus lucida in Hunan Province Based on MaxEnt Model [J]. Forest and Grassland Resources Research, 2024, 0(3): 113-120. |
| [6] | WANG Bo, CHEN Yonggang, YAN Yanting. Forest Disturbance Detection in Mountainous Areas Based on SAR and Optical Data Fusion [J]. Forest and Grassland Resources Research, 2024, 0(3): 60-69. |
| [7] | LUO Yaopei, LI Heping, YANG Guangbin, CEN Gang, LI Man, CAO Qianyang, WANG Renru, CHEN Panfang. Volume Estimation Method of High Canopy Density Pinus massoniana Forest Based on UAV Image [J]. Forest and Grassland Resources Research, 2024, 0(2): 68-79. |
| [8] | TANG Jiajun, CHAI Zongzheng. Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms [J]. Forest and Grassland Resources Research, 2024, 0(1): 56-64. |
| [9] | TANG Jiajun, WANG Gang, CHAI Zongzheng. Single-TreeVolume Estimation of Pinus massoniana based on Airborne LiDAR Point Cloud [J]. Forest and Grassland Resources Research, 2023, 0(6): 105-112. |
| [10] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
| [11] | ZHANG Shunmin, HUANG Xiaoyuan, LIU Junze, CHEN Rong, LI Xiang. Dynamic Study of Forest Landscape Morphology and Thermal Environment in Dali City [J]. Forest and Grassland Resources Research, 2023, 0(5): 122-132. |
| [12] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
| [13] | ZOU Weimin, CHEN Chao, HUANG Lei, SONG Meixuan, LI Xuejian, DU Huaqiang. Geographic Weighted Regression Model Combined with Remote Sensing for Estimating Forest Aboveground Carbon Storage of Songyang County [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 132-140. |
| [14] | LIU Hongsheng, OUYANG Wenxin, WEI Yingjie, XIE Yiqiu, LI Jianjun. Research on Inversion of Combustible Moisture Content in the Pinus Tabulaeformis Canopy Based on Sentinel-2B [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 141-149. |
| [15] | XING Yuanjun, WEN Kunjian, GUO Xiaoni, SONG Yabin, HU Zhongyue, JIANG Tengyu, HE Zijing. Single-Tree Crown Delineation in Plain Afforestation Areas Based on Mask R-CNN [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 115-120. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||