Forest and Grassland Resources Research ›› 2024›› Issue (3): 96-105.doi: 10.13466/j.cnki.lczyyj.2024.03.012
• Technical Application • Previous Articles Next Articles
GUO Haotian1(
), XIE Peizheng1, CHEN Xiaowei2, ZHOU Mengli1, JIN Shanshan1, YAN Dongfeng1(
)
Received:2024-04-08
Revised:2024-05-26
Online:2024-06-28
Published:2024-12-24
CLC Number:
GUO Haotian, XIE Peizheng, CHEN Xiaowei, ZHOU Mengli, JIN Shanshan, YAN Dongfeng. Identification of Protection Gaps for Key Wild Tree Species in the Yellow River Basin of Henan Province[J]. Forest and Grassland Resources Research, 2024, (3): 96-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2024.03.012
Tab.1
Alternative tree species selection
| 物种 | 国家重点保护野生植物保护级别 | 中国生物多样性红色名录等级 | 样点数/个 | 有效样点数/个 |
|---|---|---|---|---|
| 红豆杉(Taxus wallichiana var.chinensis) | Ⅰ | VU | 38 | 13 |
| 南方红豆杉(Taxus wallichiana var.mairei) | Ⅰ | VU | 42 | 19 |
| 秦岭冷杉(Abies chensiensis) | Ⅱ | VU | 69 | 13 |
| 庙台槭(Acer miaotaiense) | Ⅱ | VU | 27 | 6 |
| 天竺桂(Cinnamomum japoncum) | Ⅱ | VU | 36 | 7 |
| 水曲柳(Fraxinus mandshurica) | Ⅱ | VU | 90 | 30 |
| 银杏(Ginkgo biloba) | Ⅰ | CR | 0 | 0 |
| 水杉(Metasequoia glyptostroboides) | Ⅰ | EN | 0 | 0 |
| 红豆树(Ormosia hosiei) | Ⅱ | EN | 0 | 0 |
| 黄檗(Phellodendron amurense) | Ⅱ | VU | 11 | 3 |
| 巴山榧(Torreya fargesii) | Ⅱ | VU | 0 | 0 |
| 楠木(Phoebe zhennan) | Ⅱ | VU | 0 | 0 |
Tab.2
Environmental factors and corresponding codes
| 因子类型 | 代码 | 环境因子描述 | 因子类型 | 代码 | 环境因子描述 |
|---|---|---|---|---|---|
| 气候因子 | bio1 | 年平均气温 | 土壤因子 | t_sand | 上层土壤沙含量 |
| bio2 | 平均气温日较差 | t_sile | 上层土壤淤泥含量 | ||
| bio3 | 等温性 | t_clay | 上层土壤粘土含量 | ||
| bio4 | 气温季节性变动系数 | t_ref | 上层土壤容重 | ||
| bio5 | 最热月份最高温度 | t_oc | 上层土壤有机碳含量 | ||
| bio6 | 最冷月份最低温度 | t_pH_H2O | 上层土壤酸碱度 | ||
| bio7 | 气温年较差 | t_cec_clay | 上层土壤粘性层土壤的阳离子交换能力 | ||
| bio8 | 最湿季度平均温度 | t_cec_soil | 上层土壤的阳离子交换能力 | ||
| bio9 | 最干季度平均温度 | t_bs | 上层土壤基本饱和度 | ||
| bio10 | 最暖季度平均温度 | t_teb | 上层土壤交换性盐基 | ||
| bio11 | 最冷季度平均温度 | s_gravel | 下层土壤碎石体积百分比 | ||
| bio12 | 年降水量 | s_sand | 下层土壤沙含量 | ||
| bio13 | 最湿月份降水量 | s_silt | 下层土壤淤泥含量 | ||
| bio14 | 最干月份降水量 | s_clay | 下层土壤粘土含量 | ||
| bio15 | 降水量季节性变化 | s_ref | 下层土壤容重 | ||
| bio16 | 最干季度降水量 | s_oc | 下层土壤有机碳含量 | ||
| bio17 | 最湿季度降水量 | s_pH_H2O | 下层土壤酸碱度 | ||
| bio18 | 最暖季度降水量 | s_cec_clay | 下层土壤粘性层土壤的阳离子交换能力 | ||
| bio19 | 最冷季度降水量 | s_cec_soil | 下层土壤的阳离子交换能力 | ||
| s_bs | 下层土壤基本饱和度 | ||||
| 地形因子 | alt | 海拔 | s_teb | 下层土壤交换性盐基 | |
| asp | 坡向 | ||||
| slo | 坡度 | 其他因子 | rsei | 遥感生态指数 | |
| 土壤因子 | t_gravel | 上层土壤碎石体积百分比 | hq | 生境质量 |
Tab.3
Optimization of model parameters and AUC value of alternative tree species
| 物种 | RM | FC | AUC |
|---|---|---|---|
| 红豆杉(Taxus wallichiana var.chinensis) | 5.0 | L | 0.957 |
| 南方红豆杉(Taxus wallichiana var.mairei) | 1.5 | L | 0.965 |
| 秦岭冷杉(Abies chensiensis) | 0.5 | L | 0.967 |
| 庙台槭(Acer miaotaiense) | 2.5 | LQ | 0.999 |
| 天竺桂(Cinnamomum japoncum) | 3.0 | LQH | 0.991 |
| 水曲柳(Fraxinus mandshurica) | 3.0 | L | 0.930 |
Tab.4
The top three environmental factors in terms of contribution rate
| 物种 | 环境因子 | 代码 | 贡献率/ % | 物种 | 环境因子 | 代码 | 贡献率/ % |
|---|---|---|---|---|---|---|---|
| 红豆杉 | 海拔 | alt | 78.0 | 庙台槭 | 年降水量 | bio12 | 69.6 |
| (Taxus wallichiana var.chinensis) | 下层土壤粘土含量 | s_clay | 11.1 | (Acer miaotaiense) | 降水量季节性变化 | bio15 | 16.8 |
| 坡度 | slo | 5.4 | 海拔 | alt | 5.7 | ||
| 南方红豆杉 | 海拔 | alt | 40.0 | 天竺桂 | 降水量季节性变化 | bio15 | 69.9 |
| (Taxus wallichiana var.mairei) | 坡度 | slo | 23.6 | (Cinnamomum japoncum) | 年降水量 | bio12 | 15.8 |
| 平均气温日较差 | bio2 | 10.3 | 遥感生态指数 | rsei | 6.2 | ||
| 秦岭冷杉(Abies chensiensis) | 海拔 | alt | 67.9 | 水曲柳 | 气温季节性变动系数 | bio4 | 46.3 |
| 最干季度平均温度 | bio9 | 13.0 | (Fraxinus mandshurica) | 坡度 | slo | 15.2 | |
| 下层土壤碎石体积百分比 | s_gravel | 11.9 | 海拔 | alt | 14.9 |
Tab.5
The area and proportion of suitable areas of different grades of species during benchmark period
| 物种 | 非适生区 | 低适生区 | 中适生区 | 高适生区 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | ||||
| 红豆杉(Taxus wallichiana var.chinensis) | 22 971.2 | 62.6 | 11 634.8 | 31.7 | 1 795.0 | 4.9 | 289.5 | 0.8 | |||
| 南方红豆杉(Taxus wallichiana var.mairei) | 30 901.9 | 84.2 | 5 232.8 | 14.3 | 472.3 | 1.3 | 83.5 | 0.2 | |||
| 秦岭冷杉(Abies chensiensis) | 34 836.6 | 94.9 | 1 587.3 | 4.3 | 206.8 | 0.6 | 59.8 | 0.2 | |||
| 庙台槭(Acer miaotaiense) | 36 266.4 | 98.8 | 323.5 | 0.9 | 76.3 | 0.2 | 24.3 | 0.1 | |||
| 天竺桂(Cinnamomum japoncum) | 34 331.2 | 93.6 | 1 883.0 | 5.1 | 440.5 | 1.2 | 35.8 | 0.1 | |||
| 水曲柳(Fraxinus mandshurica) | 28 071.4 | 76.5 | 7 022.0 | 19.1 | 1 459.3 | 4.0 | 137.8 | 0.4 | |||
Tab.6
Area of species' suitable areas at different levels under different climate scenarioskm2
| 物种 | 适生区 | 2050时期 | 2090时期 | ||||
|---|---|---|---|---|---|---|---|
| SSP126 | SSP370 | SSP585 | SSP126 | SSP370 | SSP585 | ||
| 红豆杉 (Taxus wallichiana var.chinensis) | 低适生区 | 9 912.8 | 11 203.0 | 10 901.1 | 10 960.0 | 10 319.2 | 9 505.7 |
| 中适生区 | 1 527.5 | 1 733.5 | 1 969.8 | 1 863.5 | 1 797.8 | 1 578.3 | |
| 高适生区 | 230.0 | 316.3 | 316.8 | 333.0 | 297.0 | 328.8 | |
| 南方红豆杉 (Taxus wallichiana var.mairei) | |||||||
| 低适生区 | 5 105.4 | 3 495.4 | 5 070.5 | 4 762.0 | 4 933.4 | 2 713.9 | |
| 中适生区 | 489.8 | 286.3 | 574.0 | 517.5 | 457.3 | 214.3 | |
| 高适生区 | 111.8 | 64.8 | 129.3 | 120.8 | 117.3 | 60.8 | |
| 秦岭冷杉 (Abies chensiensis) | |||||||
| 低适生区 | 3 643.7 | 2 875.5 | 2 677.5 | 2 455.4 | 2 237.7 | 4 507.7 | |
| 中适生区 | 495.3 | 389.0 | 301.8 | 293.3 | 210.3 | 590.8 | |
| 高适生区 | 91.0 | 68.0 | 84.0 | 86.8 | 71.8 | 133.8 | |
| 庙台槭 (Acer miaotaiense) | |||||||
| 低适生区 | 75.5 | 244.2 | 267.5 | 240.8 | 309.2 | 317.7 | |
| 中适生区 | 28.3 | 55.8 | 80.0 | 63.0 | 73.8 | 85.3 | |
| 高适生区 | 3.5 | 20.0 | 17.8 | 19.5 | 25.5 | 19.0 | |
| 天竺桂 (Cinnamomum japoncum) | |||||||
| 低适生区 | 570.7 | 618.0 | 1 760.3 | 2 604.7 | 1 622.8 | 1 813.2 | |
| 中适生区 | 153.3 | 157.5 | 407.5 | 443.0 | 451.5 | 415.3 | |
| 高适生区 | 9.8 | 17.0 | 18.5 | 28.3 | 40.5 | 40.3 | |
| 水曲柳 (Fraxinus mandshurica) | |||||||
| 低适生区 | 7 757.5 | 7 812.3 | 7 510.7 | 7 528.4 | 11 187.8 | 7 177.5 | |
| 中适生区 | 1 496.3 | 1 378.0 | 1 165.3 | 1 265.3 | 2 070.8 | 1 352.8 | |
| 高适生区 | 102.0 | 124.5 | 121.3 | 158.8 | 124.0 | 135.0 | |
Tab.7
The total area and change rate of suitable area of species under different climate scenarios
| 物种 | 时期 | SSP126 | SSP370 | SSP585 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 面积/km2 | 变化率/% | 面积/km2 | 变化率/% | 面积/km2 | 变化率/% | |||||||||||
| 红豆杉 (Taxus wallichiana var.chinensis) | 2050 | 11 670.3 | -14.9 | 13 252.8 | -3.4 | 13 187.7 | -3.9 | |||||||||
| 2090 | 13 156.5 | -4.1 | 12 414.0 | -9.5 | 11 412.8 | -16.8 | ||||||||||
| 南方红豆杉 (Taxus wallichiana var.mairei) | 2050 | 5 707.0 | -1.4 | 3 846.5 | -33.5 | 5 773.8 | -0.3 | |||||||||
| 2090 | 5 400.3 | -6.7 | 5 508.0 | -4.8 | 2 989.0 | -48.4 | ||||||||||
| 秦岭冷杉 (Abies chensiensis) | 2050 | 4 230.0 | 128.2 | 3 332.5 | 79.8 | 3 063.3 | 65.2 | |||||||||
| 2090 | 2 835.5 | 52.9 | 2 519.8 | 35.9 | 5 232.3 | 182.2 | ||||||||||
| 庙台槭 (Acer miaotaiense) | 2050 | 107.3 | -74.7 | 320.0 | -24.5 | 365.3 | -13.9 | |||||||||
| 2090 | 323.3 | -23.8 | 408.5 | -3.7 | 422.0 | -0.5 | ||||||||||
| 天竺桂 (Cinnamomum japoncum) | 2050 | 733.8 | -68.9 | 792.5 | -66.4 | 2 186.3 | -7.3 | |||||||||
| 2090 | 3 076.0 | 30.4 | 2 114.8 | -10.4 | 2 268.8 | -3.8 | ||||||||||
| 水曲柳 (Fraxinus mandshurica) | 2050 | 9 355.8 | 8.5 | 9 314.8 | 8.1 | 8 797.3 | 2.1 | |||||||||
| 2090 | 8 952.5 | 3.9 | 13 382.6 | 55.3 | 8 665.3 | 0.5 | ||||||||||
Tab.8
Spatial changes of suitable habitats of key protected wild tree species under different climate scenarios
| 时期 | 气候情景 | 适宜生境 面积/km2 | 变化率/% | 适宜生境变化情况 | 自然保护地内的适宜生境 | ||||
|---|---|---|---|---|---|---|---|---|---|
| 扩张面积/km2 | 稳定面积/km2 | 收缩面积/km2 | 面积/km2 | 占比/% | |||||
| 基准 | — | 451.0 | — | — | — | — | 294.1 | 65.2 | |
| 2050 | SSP126 | 342.5 | -24.1 | 43.8 | 298.7 | 152.2 | 271.7 | 79.3 | |
| SSP370 | 421.2 | -6.6 | 91.5 | 329.7 | 121.2 | 294.8 | 70.0 | ||
| SSP585 | 446.0 | -1.1 | 81.0 | 365.0 | 86.0 | 318.6 | 71.4 | ||
| 2090 | SSP126 | 466.5 | 3.4 | 110.0 | 356.5 | 94.5 | 337.4 | 72.3 | |
| SSP370 | 427.0 | -5.3 | 77.5 | 349.5 | 101.5 | 294.8 | 69.0 | ||
| SSP585 | 489.3 | 8.5 | 122.8 | 366.5 | 84.5 | 366.5 | 74.9 | ||
Tab.9
The location and area of the protection gap and the core protection gap areas in different periods
| 位置 | 基准时期 | 2050时期 | 2090时期 | |||||
|---|---|---|---|---|---|---|---|---|
| 保护空缺区面积/km2 | 占比/% | 保护空缺区面积/km2 | 占比/% | 保护空缺核心区/km2 | 占比/% | |||
| 卢氏县 | 55.6 | 29.3 | 6.8 | 8.1 | 10.0 | 9.9 | ||
| 陕州区 | 3.0 | 1.6 | 1.9 | 2.3 | 2.2 | 2.2 | ||
| 洛宁县 | 10.3 | 5.4 | 9.4 | 11.2 | 11.2 | 11.1 | ||
| 栾川县 | 116.3 | 61.3 | 63.9 | 76.4 | 73.4 | 72.9 | ||
| 嵩县 | 4.6 | 2.4 | 1.7 | 2.0 | 3.9 | 3.9 | ||
| 合计 | 189.8 | 100.0 | 83.7 | 100.0 | 100.7 | 100.0 | ||
| [1] | AHMADI M, FARHADINIA M S, CUSHMAN S A, et al. Species and space:A combined gap analysis to guide management planning of conservation areas[J]. Landscape Ecology, 2020, 35(7):1505-1517. |
| [2] | XU Weihua, XIAO Yi, ZHANG Jingjing, et al. Strengthening protected areas for biodiversity and ecosystem services in China[J]. Proceedings of the National Academy of Sciences, 2017, 114(7):1601-1606. |
| [3] | 欧阳志云, 杜傲, 徐卫华. 中国自然保护地体系分类研究[J]. 生态学报, 2020, 40(20):7207-7215. |
| [4] | LIN Lele, HE Jian, LYU Rudan, et al. Targeted conservation management of white pines in China:Integrating phylogeographic structure,niche modeling,and conservation gap analyses[J]. Forest Ecology and Management, 2021, 492(6):119-211. |
| [5] |
刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6):677-682.
doi: 10.17520/biods.2019045 |
| [6] | YE Chao, LIU Huiyuan, QIN Haining, et al. Geographical distribution and conservation strategy of national key protected wild plants of China[J]. iScience, 2023, 26(8):107364. |
| [7] | LITKOWIEC M, LEWANDOWSKI A, WACHOWIAK W. Genetic variation in Taxus baccata L.:A case study supporting Poland’s protection and restoration program[J]. Forest Ecology and Management, 2018, 409:148-160. |
| [8] | ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity and Distributions, 2011, 17(1):43-57. |
| [9] | 王文波, 胡理乐, 布艾佳尔, 等. 应用MaxEnt模型对我国珍稀植物刺楸分布预测及其保护空缺分析[J]. 东北林业大学学报, 2022, 50(8):69-73. |
| [10] |
WEN Cheng, GU Lei, WANG Hao, et al. GAP analysis on national nature reserves in China based on the distribution of endangered species[J]. Biodiversity Science, 2015, 23(5):591-600.
doi: 10.17520/biods.2015114 |
| [11] | JENNINGS M D. Gap analysis:Concepts,methods,and recent results[J]. Landscape Ecology, 2000, 15(1):5-20. |
| [12] | 李慧, 滕皎, 殷晓洁, 等. 不同气候环境的中国珍稀濒危樟属乔木适生分布区模拟预测[J]. 东北林业大学学报, 2023, 51(2):43-53. |
| [13] | 马琪, 张园, 袁家根. 秦岭生物多样性优先区植物保护重要区识别与空缺分析[J]. 西北林学院学报, 2022, 37(2):180-185. |
| [14] |
秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9):1745-1753.
doi: 10.16258/j.cnki.1674-5906.2022.09.004 |
| [15] | 翁梅, 孙静, 叶永忠. 河南省重点保护植物优先保护等级划分研究[J]. 河南农业科学, 2012, 41(1):129-133. |
| [16] | 张慧玲, 李春奇, 叶永忠, 等. 河南省国家重点保护植物地理分布特征[J]. 河南科学, 2006, 24(1):52-55. |
| [17] | 生态环境部, 中国科学院. 中国生物多样性红色名录:高等植物卷(2020)[EB/OL](2023-05-19)[2024-03-09]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202305/t20230522_1030745.html. |
| [18] | 丁宝章, 王遂义, 高增义. 河南植物志(第一册)[M]. 郑州: 河南人民出版社,1981. |
| [19] | 宋朝区, 瞿文元. 太行山猕猴自然保护区科学考察集[M]. 北京: 中国林业出版社,1995. |
| [20] | 叶永忠, 汪万森, 李合中. 河南小秦岭国家级自然保护区科学考察集[M]. 北京: 科学出版社, 2004. |
| [21] | 贾宏汝, 陈云, 张旭, 等. 小秦岭自然保护区秦岭冷杉死亡原因[J]. 生态学报, 2016, 36(7):1936-1945. |
| [22] | 魏振铎. 栾川县野生天竺桂资源保护初探[J]. 河南林业科技, 2010, 30(6):26-27. |
| [23] |
李艳红, 张立娟, 朱文博, 等. 全球变化背景下南方红豆杉地域分布变化[J]. 自然资源学报, 2021, 36(3):783-792.
doi: 10.31497/zrzyxb.20210318 |
| [24] |
孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 2019, 30(6):2116-2128.
doi: 10.13287/j.1001-9332.201906.029 |
| [25] | 高蓓, 卫海燕, 郭彦龙, 等. 应用GIS和最大熵模型分析秦岭冷杉潜在地理分布[J]. 生态学杂志, 2015, 34(3):843-852. |
| [26] | 王书越, 潘少安, 王明睿, 等. 基于MaxEnt模型评估刺五加在东北地区的空间分布[J]. 生态学报, 2019, 39(9):3277-3286. |
| [27] | 施晨阳, 赖文峰, 文国卫, 等. 基于MaxEnt模型预测水曲柳的潜在适生区[J]. 西北林学院学报, 2022, 37(2):149-156. |
| [28] | 郑亚娇, 张沈安, 栾东涛, 等. 应用最大熵模型预测多脉青冈在不同时期的潜在分布[J]. 东北林业大学学报, 2024, 52(3):76-81. |
| [29] | 王义贵, 何学高, 胡云云, 等. 基于MaxEnt模型的大果圆柏生境适宜性评价[J]. 中南林业科技大学学报, 2023, 43(7):41-51. |
| [30] |
韦忆, 韦小丽, 王明彬, 等. 大气CO2浓度升高对红豆树苗木光合生理和形态的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6):124-132.
doi: 10.12302/j.issn.1000-2006.202208059 |
| [31] |
LIU Zhouli, CHEN Wei, HE Xingyuan, et al. Regulatory effects of elevated carbon dioxide on growth and biochemical responses to Ozone stress in Chinese Pine(Pinus tabulaeformis Carr.)[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(6):793-797.
pmid: 27798722 |
| [1] | JI Xiu, SONG Xiaofei, HUANG Liang, LIU Wenjian, YI Xuan, ZHANG Ya’ni. Prediction of Potential Suitable Areas for Fagus lucida in Hunan Province Based on MaxEnt Model [J]. Forest and Grassland Resources Research, 2024, 0(3): 113-120. |
| [2] | HU Xinting, YUAN Jun, CHENG Yonqquan, GUO Fengyi, YUAN Weiying, LI Gang, YANG Yongfeng. Biodiversity Conservation and Practice in National Wetland Park—A Case Study of Xixi National Wetland Park [J]. Forest and Grassland Resources Research, 2024, 0(2): 133-140. |
| [3] | DU Jun, CAO Jiashuo, LI Weidie. Survey and Evaluation of Wildlife Resources in Heilongjiang Huzhong National Nature Reserve [J]. Forest and Grassland Resources Research, 2023, 0(6): 82-90. |
| [4] | WU Tingtian, CHEN Yiqing, CHEN Zongzhu, LEI Jinrui, CHEN Xiaohua, LI Yuanling. Analysis on the Spatial Distribution Characteristics of Representative Populations in Tropical Rainforest of Hainan [J]. Forest and Grassland Resources Research, 2023, 0(5): 133-141. |
| [5] | WANG Xiaohan, HE Xiao, SHI Jingning. Economic Analysis on Optimal Rotation Period of Larix principis-rupprechtii under Climate Change Scenarios [J]. Forest and Grassland Resources Research, 2023, 0(5): 40-47. |
| [6] | YU Zhucheng, XU Linli, LUO Shuigen, WANG Meifang, ZHOU Xiao, CHEN Danna, JIN Wei. Assessment on Habitat Suitability of Macaca thibetana in Xianxialing Provincial Nature Reserve Using MaxEnt Modeling [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 111-117. |
| [7] | LU Guangrong, CHEN Fangqing, LÜ Kun, WU Yu, HUANG Xiangfeng, WEN Ruge. Shrub Communities and Species Diversity Characteristics in the Southern Subtropical Zone in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(3): 89-95. |
| [8] | LIU Zengli, HU Lile. Prediction of Potential Distribution and Climate Change of Rare Species Cephalotaxus oliveri [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 35-42. |
| [9] | TANG Xiaoping. National Park System Leads the Mainstreaming of Biodiversity [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 1-8. |
| [10] | XU Guoqiao, LI Xiao, WAN Yifeng, YANG Liu, XU Zhongqi, JIA Yanlong. Short-Term Impact of Enclosure on Grass Layer and Soil in Larix principis-rupprechtii Plantations [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 158-163. |
| [11] | YANG Chaoxing. Forestry Practices and Discussion of Ecological Protection in the Yellow River Basin in Henan Province [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 61-66. |
| [12] | SHI Haobo, LI Lu, LU Haiyan, SUN Guili, WANG Guihua. The Prediction of Suitable Areas of Four Species Including Populuseuphratica in Xinjiang [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(1): 38-46. |
| [13] | WANG Penghua, FAN Jungong, CHEN Xiangyang, ZHANG Kan, LIN Qingqian, HOU Jianhua. Investigation and Analysis of Birds and Beasts in Liuliping Macaque Provincial Nature Reserve,Hebei Province [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(5): 157-165. |
| [14] | CHEN Zhongzhen, SHI Junjie, JIA Cun, LI Yongxiang, LIU Jiacheng, JIN Hui, LI Yongning. Response of Radial Growth of Natural Larix principis-rupprechtii to Climatic Change [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 60-66. |
| [15] | LI Wangjun, ZHOU Ruiwu, FENG Tu, LUO Qiang, HE Bin, XIAO Qunying, PENG Mingchun. Potential Distribution Prediction of Cold—temperate Mountainous Sclerophyllous Evergreen Broad—leaved Forests in Northwest Yunnan [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(5): 99-104. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||