| [1] |
孙舒轻, 严建武, 梁伟, 等. 生态恢复背景下非辐射效应主导的黄土高原生长季地表温度变化[J]. 生态学杂志, 2021, 40(6):1820-1829.
|
| [2] |
矫京均, 辛晓洲, 余珊珊, 等. HJ-1卫星数据估算地表能量平衡[J]. 遥感学报, 2014, 18(5):1048-1058.
|
| [3] |
刘凤山, 陶福禄, 肖登攀, 等. 土地利用类型转换对地表能量平衡和气候的影响:基于SiB2模型的模拟结果[J]. 地理科学进展, 2014, 33(6):815-824.
doi: 10.11820/dlkxjz.2014.06.010
|
| [4] |
ZHU Weiwei, WU Bingfang, YAN Nana, et al. A method to estimate diurnal surface soil heat flux from MODIS data for a sparse vegetation and bare soil[J]. Journal of Hydrology, 2014, 511:139-150.
|
| [5] |
沈文清, 马钦彦, 刘允芬. 森林生态系统碳收支状况研究进展[J]. 江西农业大学学报, 2006(2):312-317.
|
| [6] |
陈东旭, 黄萧霖, 陈留根, 等. 长江中下游地区稻田不同时间尺度土壤热通量特征分析[J]. 水土保持研究, 2021, 28(4):151-158.
|
| [7] |
李强, 刘思敏, 高冠龙, 等. 额济纳绿洲地表土壤热通量特征及模拟估算[J]. 中国沙漠, 2022, 42(6):176-184.
doi: 10.7522/j.issn.1000-694X.2022.00061
|
| [8] |
聂泽鑫, 买买提艾力·买买提依明, 杨帆, 等. 塔克拉玛干沙漠腹地不同天气地表土壤热通量估算对比研究[J]. 土壤通报, 2019, 50(6):1306-1314.
|
| [9] |
马启民, 李永山, 王海兵, 等. 鄂尔多斯沙地人工柠条林能量平衡与蒸散研究[J]. 高原气象, 2022, 41(6):1511-1521.
doi: 10.7522/j.issn.1000-0534.2022.00001
|
| [10] |
裴薇薇, 王新, 王云英, 等. 祁连山区青海云杉林生长季水热通量特征及影响因素解析[J]. 干旱区资源与环境, 2022, 36(12):144-150.
|
| [11] |
AGAM N, KUSTAS W P, ALFIERI J G, et al. Micro-scale spatial variability in soil heat flux(SHF)in a wine-grape vineyard[J]. Irrigation Science, 2019, 37(3):253-268.
|
| [12] |
HEIJMANS, MONIQUE, M, et al. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra[J]. Biogeosciences, 2016, 13(13):4049-4064.
|
| [13] |
BRYS K, BRYS T, SAYEGH M A, et al. Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps[J]. Renewable Energy, 2020, 146(2):1846-1866.
|
| [14] |
FREITAS H C D. Interannual variability of water and heat fluxes in a woodland savanna(Cerrado)in Southeastern Brazil:Effects of severe drought and soil moisture[J]. Atmosphere, 2024, 15(6):668.
|
| [15] |
林兴生, 林占熺, 林冬梅, 等. 荒坡地种植巨菌草对土壤微生物群落功能多样性及土壤肥力的影响[J]. 生态学报, 2014, 34(15):4304-4312.
|
| [16] |
郑华坤, 林雄杰, 林辉, 等. 巨菌草(Pennisetum giganteum)研究进展[J]. 福建农林大学学报(自然科学版), 2019, 48(6):681-687.
|
| [17] |
宋思梦, 林冬梅, 周恒宇, 等. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9):1595-1605.
doi: 10.16258/j.cnki.1674-5906.2023.09.006
|
| [18] |
LIN Biaosheng, LIU Jiamin, ZHANG Xue, et al. The flora compositions of nitrogen-fixing bacteria and the differential expression of nif H Gene in pennisetum giganteum Z.X.L roots[J]. Hindawi Limited, 2021,20215568845-5568845.
|
| [19] |
XING Longsheng, WANG Meijia, HE Qiang, et al. Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum[J]. BMC Biology, 2023, 21(1):161.
doi: 10.1186/s12915-023-01643-w
pmid: 37480118
|
| [20] |
LIN Xingsheng, LIN Zhanxi, LIN Dongmei, et al. Effects of Planting Pennisetum sp.(Giant Juncao)on Soil Microbial Functional Diversity and Fertility in the Barren Hillside[J]. Acta Ecologica Sinica, 2014, 34(15):4304-4312.
|
| [21] |
YANKEY R, OMOOR I N A, KARANJA J K, et al. Metabolic properties,gene functions,and biosafety analysis reveal the action of three rhizospheric plant growth-promoting bacteria of Jujuncao(Pennisetum giganteum)[J]. Environmental Science and Pollution Research, 2022, 29(25):38435-38449.
|
| [22] |
杨福华, 刘韶娜, 张斌, 等. 青贮巨菌草的饲用价值及其在畜牧养殖业中的应用前景[J]. 现代畜牧兽医, 2024(5):92-96.
|
| [23] |
LI Qingyuan, XIANG Conglin, XU Lin, et al. SMRT sequencing of a full-length transcriptome reveals transcript variants involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in Pennisetum giganteum[J]. BMC Genomics, 2020, 21(1):52.
doi: 10.1186/s12864-019-6441-3
pmid: 31948405
|
| [24] |
ZHOU Kun, YIN Deliang, LIU Chen, et al. Investigating the role of poly-γ-glutamic acid in Pennisetum giganteum phytoextraction of mercury-contaminated soil[J]. Science of the Total Environment, 2024, 944:173707.
|
| [25] |
梁景华, 李法义, 敖子强, 等. 巨菌草对黔西北土法炼锌废弃地的生态修复研究[J]. 金属矿山, 2023(6):229-236.
|
| [26] |
QIU Yuyang, LEI Yating, ZHAO Hui, et al. Mesophilic anaerobic digestion of arundo donax cv.Lvzhou No.1 and pennisetum giganteum for biogas production:Structure and functional analysis of microbial communities[J]. BioEnergy Research, 2022, 16(2):1205-1216.
|
| [27] |
张茂娟, 宋思梦, 梁蔡佳, 等. 巨菌草发展现状及其在甘孜州生态脆弱区治理的应用潜力[J]. 绿色科技, 2021, 23(20):12-17.
|
| [28] |
蒲苏红, 王惜文, 彭慧玲, 等. 巨菌草对不同浓度镉铜复合重金属污染土壤的修复效果[J]. 山东林业科技, 2023, 53(4):31-35.
|
| [29] |
刘凤山, 白妮妮, 林占熺, 等. 巨菌草地表能量交换特征及其影响因素[J]. 福建农林大学学报(自然科学版), 2023, 52(3):383-390.
|
| [30] |
徐自为, 刘绍民, 徐同仁, 等. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8):875-889.
doi: 10.11867/j.issn.1001-8166.2013.08.0875
|
| [31] |
刘凤山, 白妮妮, 林占熺, 等. 基于波文比系统的巨菌草蒸散发过程及影响因素[J]. 福建农林大学学报(自然科学版), 2023, 52(2):258-264.
|
| [32] |
张戈, 赖欣, 刘康. 黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J]. 高原气象, 2023, 42(3):575-589.
doi: 10.7522/j.issn.1000-0534.2022.00083
|
| [33] |
李建刚, 奥银焕, 李照国. 夏季不同天气条件下沙漠辐射和能量平衡的对比分析[J]. 地理科学进展, 2012, 31(11):1443-1451.
|
| [34] |
MIKAYILOV F D, SHEIN E V. Theoretical principles of experimental methods for determining the thermal diffusivity of soils[J]. Eurasian Soil Science, 2010, 43(5):556-564.
|
| [35] |
GAO Zhiqiu, FAN Xingang, BIAN L. An analytical solution to one-dimensional thermal conduction-convection in soil[J]. Soil Science, 2003, 168(2):99-107.
|
| [36] |
YAO Jimin, GU Lianglei, YANG Cheng, et al. Estimation of surface energy fluxes in the permafrost region of the Tibetan Plateau based on in situ measurements and the surface energy balance system model[J]. International Journal of Climatology, 2020, 40(13):5783-5800.
|
| [37] |
杨静敬, 蔡焕杰, 王松鹤, 等. 杨凌区浅层土壤水分与深层土壤水分的关系研究[J]. 干旱地区农业研究, 2010, 28(3):53-57.
|
| [38] |
尹光彩, 王旭, 周国逸, 等. 鼎湖山针阔混交林土壤热状况研究[J]. 华南农业大学学报, 2006(3):16-20.
|
| [39] |
马柱国, 魏和林, 符淙斌. 中国东部区域土壤湿度的变化及其与气候变率的关系[J]. 气象学报, 2000(3):278-287.
|
| [40] |
王美莲, 崔学明, 韩鹏, 等. 大兴安岭原始林区土壤热通量变化特征的初探[J]. 内蒙古农业大学学报(自然科学版), 2010, 31(4):139-142.
|
| [41] |
张宏, 胡波, 刘广仁, 等. 中国土壤热通量的时空分布特征研究[J]. 气候与环境研究, 2012, 17(5):515-522.
|
| [42] |
管晓丹, 石瑞, 孔祥宁, 等. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10):995-1004.
doi: 10.11867/j.issn.1001-8166.2018.10.0995.
|