欢迎访问林草资源研究

林草资源研究 ›› 2024›› Issue (6): 117-128.doi: 10.13466/j.cnki.lczyyj.2024.06.014

• 技术应用 • 上一篇    下一篇

四川省不同乔木植被类型可燃物载量模型构建

陈昊权1(), 王洪荣2, 张文2, 董晨1,3(), 闵志强1,3   

  1. 1.浙江农林大学 数学与计算机科学学院,杭州 310019
    2.四川省林业和草原调查规划院,成都 610081
    3.浙江农林大学 林业感知技术与智能装备国家林业和草原局重点实验室,杭州 310019
  • 收稿日期:2024-10-21 修回日期:2024-12-08 出版日期:2024-12-28 发布日期:2025-04-18
  • 通讯作者: 董晨,副教授,博士,主要从事林分生长模型研究。Email:dongchen@zafu.edu.cn
  • 作者简介:陈昊权,硕士研究生,主要从事森林可燃物载量模型研究。Email:15075185961@163.com
  • 基金资助:
    四川省林业厅科技项目“四川森林草原火险因子智能监测及预警技术研究”(G202206012);四川省林业厅科技项目“四川省主要森林和草原类型可燃物载量模型研究”(H20240012)

Construction of Fuel Load Models for Different Tree Vegetation Types in Sichuan Province

CHEN Haoquan1(), WANG Hongrong2, ZHANG Wen2, DONG Chen1,3(), MIN Zhiqiang1,3   

  1. 1. College of Mathematics and Computer Science,Zhejiang Agriculture and Forestry University,Hangzhou 310019,China
    2. Sichuan Forestry and Grassland Survey and Planning Institute,Chengdu 610081,China
    3. Key Laboratory of Forestry Perception Technology and Intelligent Equipment of National Forestry and Grassland Administration,Zhejiang Agriculture and Forestry University,Hangzhou 310019,China
  • Received:2024-10-21 Revised:2024-12-08 Online:2024-12-28 Published:2025-04-18

摘要:

研究可燃物载量模型可为四川省森林火灾风险的科学评估与防控提供理论支持,同时为森林经营和防火管护提供参考。基于四川省森林火灾风险普查的6 848个乔木标准地数据,按照植被区域和植被类型,将乔木林划分为5种植被类型,分析不同植被类型的可燃物载量特征。通过Pearson相关性分析筛选出影响可燃物载量的关键因子,并结合多种函数拟合方法,确定关键因子与可燃物载量的最佳表达式。对这些表达式进行线性组合,构建基于组合变量的回归模型,并与多元逐步回归模型进行对比,确定最优可燃物载量模型。结果表明:1)不同植被类型的可燃物载量特征存在显著差异,其中乔木层可燃物载量占比最高,枯落物层占比最低。2)影响可燃物载量的关键因子因植被类型不同而有所差异,其中,平均树高、平均胸径和龄组是多个植被类型的主要影响因子,海拔、郁闭度和林分密度在特定植被类型中也具有显著影响。3)基于组合变量的回归模型和多元逐步回归模型均具有较好的模拟结果,但最佳模型因林分类型的不同而存在差异。其中,组合模型对寒冷针叶林的可燃物载量预测效果更优,而多元逐步回归模型对寒冷阔叶林、亚热带针叶林、亚热带阔叶林和亚热带混交林的预测效果更优。构建的模型可较为准确地预测四川省不同植被类型的可燃物载量,为火灾风险评估与防控措施制定提供依据。

关键词: 植被类型, 森林可燃物载量, 林分因子, 立地因子, 可燃物载量模型

Abstract:

The study of fuel load models provides a theoretical foundation for the scientific assessment and prevention of forest fire risks in Sichuan Province,while also contributing to sustainable forest management and fire prevention strategies.Using data from 6 848 standard arbor sample plots collected during the Sichuan Province Forest Fire Risk Survey,arbor forests were categorized into five forest types based on vegetation zones and types.The fuel load characteristics of different vegetation types were analyzed,and a Pearson correlation analysis was conducted to identify the key factors influencing fuel load.Utilizing various curve-fitting techniques,optimal relationships between these pivotal factors and fuel load were established,which were subsequently combined to construct a regression model based on composite variables.This composite variable model was compared to a multiple stepwise regression model to identify the most effective fuel load estimation model.1)Significant differences were observed in the fuel load characteristics among vegetation types.The arbor layer accounted for the largest proportion of the fuel load,while the litter layer contributed the least.2)Key factors influencing fuel load varied across vegetation types.Average tree height,average diameter at breast height,and age group emerged as major influencing factors across multiple vegetation types,whereas altitude,canopy density,and stand density had significant impacts in specific vegetation types.3)Both the composite variable regression model and the multiple stepwise regression model exhibited strong predictive performance.However,the optimal model depended on the forest type.The composite model performed best for cold coniferous forests,while the multiple stepwise regression model achieved higher predictive accuracy for cold broadleaf forests,subtropical coniferous forests,subtropical broadleaf forests,and subtropical mixed forests.The models developed in this study are methodologically robust and generate reliable predictions.These models are recommended for estimating the fuel loads of various vegetation types in Sichuan Province,providing critical support for future fire risk assessments and prevention strategies.

Key words: vegetation types, forest fuel load, stand factors, site factors, fuel models

中图分类号: