| [1] |
STEVENS G C. Lianas as structural parasites:The Bursera simaruba example[J]. Ecology, 1987, 68(1):77-81.
|
| [2] |
SCHNITZER S A, BONGERS F. The ecology of lianas and their role in forests[J]. Trends in Ecology & Evolution, 2002, 17(5):223-230.
|
| [3] |
SCHNITZER S A, MANGAN S A, DALLING J W, et al. Liana abundance,diversity,and distribution on Barro Colorado Island,Panama[J]. Plos One, 2012, 7(12):e52114.
|
| [4] |
PUTZ F E. Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin,Venezuela[J]. Biotropica, 1983, 15(3):185-189.
|
| [5] |
HEGARTY E E. Leaf litter production by lianas and trees in a sub-tropical Australian rain forest[J]. Journal of Tropical Ecology, 1991, 7(2):201-214.
|
| [6] |
ICHIHASHI R, CHIU C W, KOMATSU H, et al. Contribution of lianas to community-level canopy transpiration in a warm-temperate forest[J]. Functional Ecology, 2017, 31(9):1690-1699.
|
| [7] |
ISCHNITZER S A, MICHEl N L, POWERS J S, et al. Lianas maintain insectivorous bird abundance and diversity in a neotropical forest[J]. Ecology, 2020, 101(12):e03176.
|
| [8] |
MEUNIER F, VERBEECK H, COWDERY B, et al. Unraveling the relative role of light and water competition between lianas and trees in tropical forests:A vegetation model analysis[J]. Journal of Ecology, 2020, 109(1):519-540.
|
| [9] |
SCHNITZER S A. Testing ecological theory with lianas[J]. New Phytologist, 2018, 220(2):366-380.
doi: 10.1111/nph.15431
pmid: 30247750
|
| [10] |
VIOLLE C, NAVAS M L, VILE D, et al. Let the concept of trait be functional[J]. Oikos, 2007, 116(5):882-892.
|
| [11] |
PEREZ-HARGUINDEGUY N, DIAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2013,61:167-234.
|
| [12] |
LIU Qi, STERCK F J, ZHANG JiaoLin, et al. Traits,strategies,and niches of liana species in a tropical seasonal rainforest[J]. Oecologia, 2021,196:499-514.
|
| [13] |
李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005,22:118-127.
|
| [14] |
KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio:A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6):1441-1450.
|
| [15] |
王梦洁, 容丽, 李婷婷, 等. 黔中喀斯特9种木质藤本叶功能性状研究[J]. 热带亚热带植物学报, 2021, 29(5):455-464.
|
| [16] |
BAI Xiaolong, YANG Da, SHER J, et al. Divergences in stem and leaf traits between lianas and co-existing trees in a subtropical montane forest[J]. Journal of Plant Ecology, 2023,17:rtad037.
|
| [17] |
王琪, 容丽, 王梦洁, 等. 黔中木本植物叶功能性状对退化喀斯特土壤特性的响应[J]. 地球与环境, 2022, 5(5):639-647.
|
| [18] |
吴迪, 龙秀琴, 张建利, 等. 喀斯特峰丛洼地石漠化区4种藤本植物的光合日变化特征[J]. 江苏农业科学, 2015, 43(8):254-256.
|
| [19] |
熊玲, 龙翠玲, 梁盛, 等. 喀斯特森林木本植物叶片功能性状对土壤特性的响应[J]. 热带亚热带植物学报, 2024, 32(3):310-318.
|
| [20] |
罗丝琼, 张广奇, 郭其强, 等. 茂兰喀斯特常绿落叶阔叶混交林林窗下木本植物更新组成[J]. 生态学杂志, 2020, 39(7):2131-2139.
|
| [21] |
姜飘, 朱锦心, 翁殊斐, 等. 藤本植物表型可塑性研究综述[J]. 世界林业研究, 2023, 36(6):14-19.
|
| [22] |
翟偲涵, 王平, 盛连喜. 竞争条件下植物功能性状的表型可塑性研究进展[J]. 北华大学学报(自然科学版), 2017, 18(4):538-546.
|
| [23] |
PATTISON R R, GOLDSTEIN G, ARES A. Growth,biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species[J]. Oecologia, 1998,117:449-459.
|
| [24] |
FUNK J L. Differences in plasticity between invasive and native plants from a low resource environment[J]. Journal of Ecology, 2008, 96(6):1162-1173.
|
| [25] |
钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5):562-572.
doi: 10.17521/cjpe.2017.0270
|
| [26] |
FEITOSA T S, DE CARVALHO E C, BARRETO R W, et al. Use of support influences height and above-ground allometry but not biomass allocation to different aerial organs of an invasive vine[J]. Trees, 2023, 37(2):373-383.
|
| [27] |
吴陶红, 龙翠玲, 熊玲, 等. 喀斯特森林不同生长型植物叶片功能性状变异及其适应特征[J]. 应用与环境生物学报, 2023, 29(5):1043-1049.
|
| [28] |
刘金环, 曾德慧, DON K L. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921-925.
|
| [29] |
MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought[J]. New Phytologist, 2008, 178(4):719-739.
|
| [30] |
董雪, 海鹭, 韩春霞, 等. 干旱区降雨梯度对沙冬青根-茎-叶生态化学计量特征的影响[J]. 林业科学研究, 2023, 36(5):60-71.
|
| [31] |
POORTER H, PEPIN S, RIJKERS T, et al. Construction costs,chemical composition and payback time of high-and low-irradiance leaves[J]. Journal of Experimental Botany, 2006, 57(2):355-371.
|
| [32] |
ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580.
|
| [33] |
LAMBERS H, CHAPIN F S, PONS T L. Plant physiological ecology[M]. New York: Springer, 1998.
|
| [34] |
REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30):11001-11006.
|
| [35] |
AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: A reevaluation of processes and patterns[J]. Advances in Ecological Research, 1999,30:1-67.
|
| [36] |
Kirkby E A. Marschner's mineral nutrition of plants[M]. New York: Academic Press, 2023.
|
| [37] |
杨勇, 许鑫, 徐玥, 等. 黔北优势植物对槽谷型喀斯特生境的适应策略:基于功能性状与生态化学计量相关联的证据[J]. 地球与环境, 2020, 48(4):413-423.
|
| [38] |
周汀. 小生境下典型喀斯特森林植物化学计量特征及其适应机制[D]. 贵州: 贵州大学, 2022.
|
| [39] |
WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies:Some leading dimensions of variation between species[J]. Annual Review of Ecology & Systematics, 2002, 33(1):125-159.
|
| [40] |
周卫, 汪洪. 植物钙吸收、转运及代谢的生理和分子机制[J]. 植物学报, 2007, 24(6):762-778.
|