[1] |
刘恒. 基于多源数据的森林资源二类调查蓄积量估测研究[D]. 西安: 西安科技大学, 2019.
|
[2] |
胡建锦, 熊伟, 方陆明, 等. 基于距离相关系数和Catboost方法的森林蓄积量估测[J]. 中南林业科技大学学报, 2023, 43(5):27-35.
|
[3] |
高万里, 何得龙. 西北干旱地区林业工程抗旱造林存在的问题及对策[J]. 现代农业科技, 2020(11):170.
|
[4] |
王强, 张勃, 戴声佩, 等. 三北防护林工程区植被覆盖变化与影响因子分析[J]. 中国环境科学, 2012, 32(7):1302-1308.
|
[5] |
ROUSSEL J, CASPERSEN J, BéLAND M, et al. Removing bias from LiDAR-based estimates of canopy height:Accounting for the effects of pulse density and footprint size[J]. Remote Sensing of Environment, 2017, 198:1-16.
|
[6] |
ZHAO Panpan, LU Dengsheng, WANG Guangxing, et al. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation[J]. Remote Sensing, 2016, 8(6):469.
|
[7] |
REIS A, FRANKLIN S, MELLO J, et al. Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data:A case study in Minas Gerais State,Brazil[J]. International Journal of Remote Sensing, 2019, 40(7-8):2683-2702.
|
[8] |
刘俊. 基于ALOS遥感影像纹理信息的怀柔区针、阔叶林蓄积量反演模型研究[D]. 北京: 北京林业大学, 2014.
|
[9] |
周如意. 基于Landsat-8遥感影像的森林蓄积量估测[D]. 杭州: 浙江农林大学, 2019.
|
[10] |
PARKITNA K, KROK G, MICICKI S, et al. Modelling growing stock volume of forest stands with various ALS area-based approaches[J]. Forestry, 2021, 94(5):1-21.
|
[11] |
王月婷. 基于多源遥感数据的森林蓄积量估算[D]. 北京: 北京林业大学, 2015.
|
[12] |
STROBL C, BOULESTEIX A L, ZEILEIS A, et al. Bias in random forest variable importance measures:Illustrations,sources and a solution[J]. Bmc Bioinformatics, 2007, 8(1):25.
|
[13] |
LI Xinyu, LIU Zhaohua, WANG Guangxing, et al. Estimating the growing stem volume of Chinese Pine and Larch plantations based on fused optical data using an improved variable screening method and stacking algorithm[J]. Remote Sensing, 2020, 12(5):871.
|
[14] |
JIANG Fugen, SMITH A R, KUTIA M, et al. A modified KNN method for mapping the leaf area index in arid and Semi-Arid Areas of China[J]. Remote Sensing, 2020, 12(11):1884.
|
[15] |
尤静妮. 基于高分遥感纹理信息的森林蓄积量估测研究[D]. 西安: 西安科技大学, 2017.
|
[16] |
SUN Hua, WANG Qing, WANG Guangxing, et al. Optimizing kNN for mapping vegetation cover of Arid and Semi-Arid Areas using Landsat images[J]. Remote Sensing, 2018, 10(8):1248.
|
[17] |
张苏, 周小成, 黄洪宇, 等. 基于SVR的GF1号遥感影像森林蓄积量估测[J]. 贵州大学学报(自然科学版), 2019, 36(3):21-26.
|
[18] |
曹霖, 彭道黎, 王雪军, 等. 应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算[J]. 东北林业大学学报, 2018, 46(9):54-58.
|
[19] |
王黎明, 吴香华, 赵天良, 等. 基于距离相关系数和支持向量机回归的PM_(2.5)浓度滚动统计预报方案[J]. 环境科学学报, 2017, 37(4):1268-1276.
|
[20] |
袁钰娜, 彭道黎, 王威, 等. 利用机载激光雷达技术估测东北林区典型针叶林的蓄积量[J]. 应用生态学报, 2021, 32(3):836-844.
doi: 10.13287/j.1001-9332.202103.001
|
[21] |
KURSA M B, RUDNICKI W R. Feature selection with boruta package[J]. Journal of Statistical Software, 2010, 36(11):1-13.
|
[22] |
蒋馥根, 孙华, ZHAO Feng, 等. 基于方差优化k最近邻法的森林蓄积量估测[J]. 森林与环境学报, 2019, 39(5):497-504.
|
[23] |
向安民, 刘凤伶, 于宝义, 等. 基于k-NN方法和GF遥感影像的森林蓄积量估测[J]. 浙江农林大学学报, 2017, 34(3):406-412.
|
[24] |
HAN Bo, QIAO Lina, CHEN Jinglin, et al. Genetic KNN:A weighted KNN approach supported by genetic algorithm for photometric redshift estimation of quasars[J]. Research in Astronomy and Astrophysics, 2021, 21(1):167-179.
|