| [1] |
薛春泉, 陈振雄, 杨加志, 等. 省市县一体化森林碳储量估测技术体系:以广东省为例[J]. 林业资源管理, 2022(4):157-163.
|
| [2] |
曾伟生, 杨学云, 孙乡楠, 等. 森林资源调查监测中各级储量数据的一体化方法研究[J]. 林业资源管理, 2022(4):13-19.
|
| [3] |
庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105.
|
| [4] |
曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据估计林分蓄积量及平均高和断面积[J]. 林业资源管理, 2020(2):79-86.
|
| [5] |
曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2):31-38.
|
| [6] |
袁钰娜, 彭道黎, 王威, 等. 利用机载激光雷达技术估测东北林区典型针叶林的蓄积量[J]. 应用生态学报, 2021, 32(3):836-844.
doi: 10.13287/j.1001-9332.202103.001
|
| [7] |
李春干, 李振. 机载激光雷达大区域亚热带森林参数估测的普适性模型式[J]. 林业科学, 2021, 57(10):23-35.
|
| [8] |
ZOU Wentao, ZENG Weisheng, SUN Xiangnan. Simultaneous models for the estimation of main forest parameters based on airborne LiDAR data[J]. Forests, 2024, 15:775.
|
| [9] |
WANG Bing, JIA Kun, LIANG Shunlin, et al. Assessment of Sentinel-2 MSI spectral band reflectances for estimating fractional vegetation cover[J]. Remote Sensing, 2018, 10(12):1927.
doi: 10.3390/rs10121927
|
| [10] |
REES W G, TOMANEY J, TUTUBALIA O, et al. Estimation of boreal forest growing stock volume in Russia from Sentinel-2 MSI and land cover classification[J]. Remote Sensing, 2021, 13(21):4483.
doi: 10.3390/rs13214483
|
| [11] |
FANG Gengsheng, HE Xiaobing, WENG Yuhui, et al. Texture features derived from Sentinel-2 vegetation indices for estimating and mapping forest growing stock volume[J]. Remote Sensing, 2023, 15(11):2821.
doi: 10.3390/rs15112821
|
| [12] |
龙依, 蒋馥根, 孙华, 等. 基于HLS数据的森林蓄积量遥感反演[J]. 森林与环境学报, 2021, 41(6):62-70.
|
| [13] |
吴胜义, 王义贵, 王飞, 等. 基于多距离度量kNN模型的森林蓄积量反演[J]. 中南林业科技大学学报, 2023, 43(2):15-23.
|
| [14] |
LIN Hui, ZHAO Wangguo, LONG Jiangping, et al. Mapping forest growing stem volume using novel feature evaluation criteria based on spectral saturation in planted Chinese for forest[J]. Remote Sensing, 2023, 15(2):402.
doi: 10.3390/rs15020402
|
| [15] |
NAIK P, DALPONTE M, BRUZZONE L. Prediction of forest aboveground biomass using multitemporal multispectral remote sensing data[J]. Remote Sensing, 2021, 13(7):1282.
doi: 10.3390/rs13071282
|
| [16] |
WAI P, SU Huiyi, LI Mingshi. Estimating aboveground biomass of two different forest types in Myanmar from Sentinel-2 data with machine learning and geostatistical algorithms[J]. Remote Sensing, 2022, 14(9):2146.
doi: 10.3390/rs14092146
|
| [17] |
白嘎力, 萨如拉, 滑永春, 等. 基于哨兵2遥感影像的根河林区森林地上生物量估算[J]. 内蒙古林业调查设计, 2023, 46(2):25-30.
|
| [18] |
CHEN Xinyang, YANG Kemig, MA Jiang, et al. Aboveground biomass inversion based on object-oriented classification and pearson-mRMR-machine learning model[J]. Remote Sensing, 2024, 16(9):1537.
doi: 10.3390/rs16091537
|
| [19] |
PEI Huiqing, OWARI T, TSUYUKI S, et al. Identifying spatial variation of carbon stock in a warm temperate forest in central Japan using Sentinrl-2 and digital elevation model data[J]. Remote Sensing, 2023, 15(8):1997.
doi: 10.3390/rs15081997
|
| [20] |
王珠娜, 胡月, 张亚昊, 等. 基于遥感影像的森林质量评价方法研究[J]. 湖北林业科技, 2022, 51(4):37-42.
|
| [21] |
杨义炜, 高牧寒, 林腾. 基于哨兵2号卫星影像的建瓯市森林扰动变化监测研究[J]. 林业与生态科学, 2023, 38(4):106-113.
|
| [22] |
MORIN D, PLANELLS M, GUYON D, et al. Estimation and mapping of forest structure parameters from open access satellite images:development of a genetic method with a study case on coniferous plantation[J]. Remote Sensing, 2019, 11(11):1275.
doi: 10.3390/rs11111275
|
| [23] |
LI Xinyu, ZHANG Meng, LONG Jiangping, et al. A novel method for estimating spatial distribution of forest above-ground biomass based on multispectral fusion data and ensemble learning algorithm[J]. Remote Sensing, 2021, 13(19):3910.
doi: 10.3390/rs13193910
|
| [24] |
WU Xiangqian, SHEN Xin, ZHANG Zhengnan, et al. An advanced framework for multi-scale forest structural parameter estimations based on UAS-LiDAR and Sentinel-2 satellite imagery in forest plantations of northern China[J]. Remote Sensing, 2022, 14(13):2023.
doi: 10.3390/rs14092023
|
| [25] |
SA Rula, FAN Wengyi. Estimation of forest parameters in boreal artificial coniferous forests using Landsat 8 and Sentinel-2A[J]. Remote Sensing, 2023, 15(14):3605.
doi: 10.3390/rs15143605
|
| [26] |
邹文涛, 曾伟生, 孙乡楠. 基于机载激光雷达数据估计主要森林参数联立模型[J]. 中南林业调查规划, 2024, 43(4):32-38.
|
| [27] |
曾伟生, 唐守正. 立木生物量模型的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106-113.
|
| [28] |
国家林业和草原局. 2021中国林草生态综合监测评价报告. 北京: 中国林业出版社, 2023:121.
|
| [29] |
国家林业局. 立木材积表:LY/T 1353—1999[S]. 北京: 中国标准出版社,1999.
|
| [30] |
全国森林资源标准化技术委员会. 主要树种立木生物量模型与碳计量参数:GB/T 43648—2024[S]. 北京: 中国标准出版社, 2024.
|
| [31] |
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137-143.
|
| [32] |
国家林业局. 森林资源规划设计调查技术规程:GB/T 26424—2010[S]. 北京: 中国标准出版社, 2011.
|